بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm steps » algorithm shows (توسيع البحث), algorithm models (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm steps » algorithm shows (توسيع البحث), algorithm models (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
-
81
BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
منشور في 2019"…Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a <b>B</b>iomass <b>O</b>bjective <b>F</b>unction from experimental <b>dat</b>a. …"
-
82
-
83
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
-
84
EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit
منشور في 2025"…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …"
-
85
Bespoke software controls the sorter GUI and reports on instrument status to the user.
منشور في 2024الموضوعات: -
86
-
87
-
88
If datasets are small and/or noisy, linear-regression-based algorithms for identifying functional groups outperform more complex versions.
منشور في 2024"…More specifically, we plot the <i>R</i><sup>2</sup> of the best linear model minus the <i>R</i><sup>2</sup> of the best quadratic, where “best” refers to the model identified by the corresponding Metropolis algorithm over its finite runtime (10000 steps). (B) Nevertheless, even when the linear algorithm loses in <i>R</i><sup>2</sup>, the grouping it identifies can be a better representation of the underlying ground truth. …"
-
89
-
90
-
91
The optimal solution set of NYN by using different algorithms.
منشور في 2022الموضوعات: "…evolutionary genetic algorithm…"
-
92
The optimal solution set of HN by using different algorithms.
منشور في 2022الموضوعات: "…evolutionary genetic algorithm…"
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100