Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm which » algorithm where (Expand Search), algorithm within (Expand Search)
python function » protein function (Expand Search)
algorithm b » algorithm _ (Expand Search), algorithms _ (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm which » algorithm where (Expand Search), algorithm within (Expand Search)
python function » protein function (Expand Search)
algorithm b » algorithm _ (Expand Search), algorithms _ (Expand Search)
-
141
-
142
-
143
-
144
-
145
-
146
-
147
-
148
datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf
Published 2021“…We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
149
datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip
Published 2021“…We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
150
datasheet1_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.pdf
Published 2021“…We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
151
datasheet2_Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces.zip
Published 2021“…We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.…”
-
152
-
153
Reconstructing <i>sparse</i>, binary patterns using message passing algorithms and PCA.
Published 2023“…Lines depict the result of the state evolution, while crosses denote the performance of the AMP algorithm on an instance of the problem. While AMP performs the same starting from both initialisations for <i>ρ</i> = 0.1 and <i>ρ</i> = 0.3, there is a gap in performance for <i>ρ</i> = 0.05, which might hint at the existence of a hard phase (see main text). …”
-
154
-
155
-
156
The result of Wilcoxon signed-rand test.
Published 2022Subjects: “…evolutionary genetic algorithm…”
-
157
The Simulation and optimization process of pipe diameter selection.
Published 2022Subjects: “…evolutionary genetic algorithm…”
-
158
Optional pipe diameter and unit price of NYN.
Published 2022Subjects: “…evolutionary genetic algorithm…”
-
159
Optional pipe diameter and unit price of HN.
Published 2022Subjects: “…evolutionary genetic algorithm…”
-
160