Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm brain » algorithm against (Expand Search), algorithm design (Expand Search), algorithm within (Expand Search)
python function » protein function (Expand Search)
algorithm ai » algorithm a (Expand Search), algorithm i (Expand Search), algorithm _ (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithm brain » algorithm against (Expand Search), algorithm design (Expand Search), algorithm within (Expand Search)
python function » protein function (Expand Search)
algorithm ai » algorithm a (Expand Search), algorithm i (Expand Search), algorithm _ (Expand Search)
-
1521
Image 9_Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patien...
Published 2025“…TIME analysis was carried out using multiple deconvolution algorithms. Additionally, functional assays including CCK8, cell cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells using CRISPR/Cas9 technology</p>Results<p>Thirty-six IERGs were associated with GBM outcomes, with 20 linked to poor survival and 16 to better outcomes. …”
-
1522
Table 2_Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patien...
Published 2025“…TIME analysis was carried out using multiple deconvolution algorithms. Additionally, functional assays including CCK8, cell cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells using CRISPR/Cas9 technology</p>Results<p>Thirty-six IERGs were associated with GBM outcomes, with 20 linked to poor survival and 16 to better outcomes. …”
-
1523
Table 3_Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patien...
Published 2025“…TIME analysis was carried out using multiple deconvolution algorithms. Additionally, functional assays including CCK8, cell cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells using CRISPR/Cas9 technology</p>Results<p>Thirty-six IERGs were associated with GBM outcomes, with 20 linked to poor survival and 16 to better outcomes. …”
-
1524
Table 1_Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patien...
Published 2025“…TIME analysis was carried out using multiple deconvolution algorithms. Additionally, functional assays including CCK8, cell cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells using CRISPR/Cas9 technology</p>Results<p>Thirty-six IERGs were associated with GBM outcomes, with 20 linked to poor survival and 16 to better outcomes. …”
-
1525
Image 12_Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patie...
Published 2025“…TIME analysis was carried out using multiple deconvolution algorithms. Additionally, functional assays including CCK8, cell cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells using CRISPR/Cas9 technology</p>Results<p>Thirty-six IERGs were associated with GBM outcomes, with 20 linked to poor survival and 16 to better outcomes. …”
-
1526
Image 3_Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patien...
Published 2025“…TIME analysis was carried out using multiple deconvolution algorithms. Additionally, functional assays including CCK8, cell cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells using CRISPR/Cas9 technology</p>Results<p>Thirty-six IERGs were associated with GBM outcomes, with 20 linked to poor survival and 16 to better outcomes. …”
-
1527
Image 6_Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patien...
Published 2025“…TIME analysis was carried out using multiple deconvolution algorithms. Additionally, functional assays including CCK8, cell cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells using CRISPR/Cas9 technology</p>Results<p>Thirty-six IERGs were associated with GBM outcomes, with 20 linked to poor survival and 16 to better outcomes. …”
-
1528
Image 7_Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patien...
Published 2025“…TIME analysis was carried out using multiple deconvolution algorithms. Additionally, functional assays including CCK8, cell cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells using CRISPR/Cas9 technology</p>Results<p>Thirty-six IERGs were associated with GBM outcomes, with 20 linked to poor survival and 16 to better outcomes. …”
-
1529
Image 1_Immune intrinsic escape signature stratifies prognosis, characterizes the tumor immune microenvironment, and identifies tumorigenic PPP1R8 in glioblastoma multiforme patien...
Published 2025“…TIME analysis was carried out using multiple deconvolution algorithms. Additionally, functional assays including CCK8, cell cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells using CRISPR/Cas9 technology</p>Results<p>Thirty-six IERGs were associated with GBM outcomes, with 20 linked to poor survival and 16 to better outcomes. …”
-
1530
Expression vs genomics for predicting dependencies
Published 2024“…If you are interested in trying machine learning, the files Features.hdf5 and Target.hdf5 contain the data munged in a convenient form for standard supervised machine learning algorithms.</p><p dir="ltr"><br></p><p dir="ltr">Some large files are in the binary format hdf5 for efficiency in space and read-in. …”
-
1531
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”
-
1532
Image 1_Machine learning identifies neutrophil extracellular traps-related biomarkers for acute ischemic stroke diagnosis.tif
Published 2025“…</p>Methods<p>Two GEO datasets (GSE37587 and GSE16561) were integrated to identify differentially expressed genes (DEGs) between AIS patients and healthy controls. Gene Set Enrichment Analysis (GSEA) was performed to explore functional pathways, while single-sample GSEA (ssGSEA) was used to evaluate immune cell infiltration patterns. …”
-
1533
Table 1_Machine learning identifies neutrophil extracellular traps-related biomarkers for acute ischemic stroke diagnosis.docx
Published 2025“…</p>Methods<p>Two GEO datasets (GSE37587 and GSE16561) were integrated to identify differentially expressed genes (DEGs) between AIS patients and healthy controls. Gene Set Enrichment Analysis (GSEA) was performed to explore functional pathways, while single-sample GSEA (ssGSEA) was used to evaluate immune cell infiltration patterns. …”
-
1534
Table 1_Explainable machine learning model for predicting the outcome of acute ischemic stroke after intravenous thrombolysis.docx
Published 2025“…Introduction<p>Acute ischemic stroke (AIS) patients often experience poor functional outcomes post-intravenous thrombolysis (IVT). …”
-
1535
Data_Sheet_1_Back-Propagation Learning in Deep Spike-By-Spike Networks.pdf
Published 2019“…What is missing, however, are algorithms for finding weight sets that would optimize the output performances of deep SbS networks with many layers. …”
-
1536
Data_Sheet_2_Back-Propagation Learning in Deep Spike-By-Spike Networks.ZIP
Published 2019“…What is missing, however, are algorithms for finding weight sets that would optimize the output performances of deep SbS networks with many layers. …”