يعرض 221 - 240 نتائج من 2,693 نتيجة بحث عن '(( ((algorithm from) OR (algorithm flow)) function ) OR ( algorithm python function ))', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 221

    Python code for a rule-based NLP model for mapping circular economy indicators to SDGs حسب Zahir Barahmand (18008947)

    منشور في 2025
    "…The package includes:</p><ul><li>The complete Python codebase implementing the classification algorithm</li><li>A detailed manual outlining model features, requirements, and usage instructions</li><li>Sample input CSV files and corresponding processed output files to demonstrate functionality</li><li>Keyword dictionaries for all 17 SDGs, distinguishing strong and weak matches</li></ul><p dir="ltr">These materials enable full reproducibility of the study, facilitate adaptation for related research, and offer transparency in the methodological framework.…"
  2. 222

    Multimodal reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  3. 223
  4. 224
  5. 225
  6. 226
  7. 227
  8. 228
  9. 229
  10. 230

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  11. 231

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  12. 232

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  13. 233

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  14. 234

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  15. 235

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  16. 236

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  17. 237

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  18. 238

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  19. 239

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  20. 240

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"