بدائل البحث:
algorithm machine » algorithm achieves (توسيع البحث), algorithm within (توسيع البحث)
algorithm showing » algorithm shows (توسيع البحث), algorithm using (توسيع البحث), algorithms using (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm machine » algorithm achieves (توسيع البحث), algorithm within (توسيع البحث)
algorithm showing » algorithm shows (توسيع البحث), algorithm using (توسيع البحث), algorithms using (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
-
21
wIRBMO feature selection algorithm improving rate.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
22
Sensitivity values of IRBMO vs. other binary algorithms.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
23
Specificity values of IRBMO vs. other binary algorithms.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
24
Fitness values of IRBMO vs. other binary algorithms.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
25
-
26
Radar chart of classification accuracy of IRBMO vs. other algorithms.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
27
Number of features selected for IRBMO vs. other binary algorithms.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
28
Fitness values of IRBMO vs. other feature selection algorithm.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
29
Classification accuracy values of IRBMO vs. other binary algorithms.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
30
F-score values of IRBMO vs. other binary algorithms.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
31
Iterative graph of IRBMO vs. other feature selection algorithms.
منشور في 2025الموضوعات: "…continuous optimization algorithm…"
-
32
Efficient Algorithms for GPU Accelerated Evaluation of the DFT Exchange-Correlation Functional
منشور في 2025"…Improving algorithmic efficiency through hardware-aware implementations enables application to larger systems and more efficient generation of larger training data sets for machine-learning. …"
-
33
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
منشور في 2025"…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …"
-
34
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
منشور في 2025"…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
-
35
-
36
-
37
-
38
-
39
-
40