Showing 61 - 80 results of 4,283 for search '(( ((algorithm machine) OR (algorithm using)) function ) OR ( algorithm python function ))*', query time: 0.42s Refine Results
  1. 61

    Table 8_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  2. 62

    Table 7_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  3. 63

    Table 4_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  4. 64

    Table 6_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  5. 65

    Table 3_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  6. 66

    Table 2_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  7. 67

    Table 1_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.xls by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  8. 68

    Data Sheet 1_Feature genes identification and immune infiltration assessment in abdominal aortic aneurysm using WGCNA and machine learning algorithms.docx by Ming Xie (420493)

    Published 2024
    “…By intersecting the result of 3 machine learning algorithms and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A, and PLN genes. …”
  9. 69
  10. 70

    Predicting the Mutagenic Activity of Nitroaromatics Using Conceptual Density Functional Theory Descriptors and Explainable No-Code Machine Learning Approaches by Andrés Halabi Diaz (20798460)

    Published 2025
    “…Following OECD QSAR guidelines, feature selection and model development were performed using decision-tree-based algorithms (Random Tree, JCHAID*, SPAARC) and multilayer perceptrons (MLPs). …”
  11. 71
  12. 72

    Data Sheet 1_Hybrid machine learning algorithms accurately predict marine ecological communities.pdf by Luciana Erika Yaginuma (10477013)

    Published 2025
    “…In the supervised stage, these associations were modeled as a function of the environmental features by five supervised algorithms (Support Vector Machine, Random Forest, k-Nearest Neighbors, Naive Bayes, and Stochastic Gradient Boosting), using 80% of the samples for training, leaving the remaining for testing. …”
  13. 73

    Data Sheet 1_Investigating neural markers of Alzheimer's disease in posttraumatic stress disorder using machine learning algorithms and magnetic resonance imaging.pdf by Gabriella Yakemow (20137758)

    Published 2024
    “…Additionally, we utilized two previously established machine learning-based algorithms, one representing AD-like brain activity (Machine learning-based AD Designation [MAD]) and the other focused on AD-like brain structural changes (AD-like Brain Structure [ABS]). …”
  14. 74

    Dataset of networks used in assessing the Troika algorithm for clique partitioning and community detection by Samin Aref (4683934)

    Published 2025
    “…Each network is provided in .gml format or .pkl format which can be read into a networkX graph object using standard functions from the networkX library in Python. …”
  15. 75
  16. 76
  17. 77
  18. 78
  19. 79

    A framework for improving localisation prediction algorithms. by Sven B. Gould (12237287)

    Published 2024
    “…One can expect that the combination of multi-dimensional parameters from evolutionary biology, cell biology and molecular biology on evolutionary diverse species will significantly improve the next generation of machine leaning algorithms that serve localisation (and function) predictions.…”
  20. 80

    MWOA-BiLSTM machine fault detection process. by Yi-Qiang Xia (20161326)

    Published 2024
    “…Moreover, the Wilcoxon rank sum test is used to verify the effectiveness of the proposed algorithm. …”