يعرض 81 - 100 نتائج من 480 نتيجة بحث عن '(( ((algorithm pre) OR (algorithm where)) function ) OR ( algorithm python function ))*', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 81
  2. 82

    Python code for a rule-based NLP model for mapping circular economy indicators to SDGs حسب Zahir Barahmand (18008947)

    منشور في 2025
    "…The package includes:</p><ul><li>The complete Python codebase implementing the classification algorithm</li><li>A detailed manual outlining model features, requirements, and usage instructions</li><li>Sample input CSV files and corresponding processed output files to demonstrate functionality</li><li>Keyword dictionaries for all 17 SDGs, distinguishing strong and weak matches</li></ul><p dir="ltr">These materials enable full reproducibility of the study, facilitate adaptation for related research, and offer transparency in the methodological framework.…"
  3. 83

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  4. 84

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  5. 85

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  6. 86

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  7. 87

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  8. 88

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  9. 89

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  10. 90

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  11. 91

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  12. 92

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  13. 93

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  14. 94

    State Function-Based Correction: A Simple and Efficient Free-Energy Correction Algorithm for Large-Scale Relative Binding Free-Energy Calculations حسب Runduo Liu (10756379)

    منشور في 2025
    "…We present an efficient and straightforward State Function-based Correction (SFC) algorithm, which leverages the state function property of free energy without requiring cycle identification. …"
  15. 95

    Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty حسب Arnaud Liehrmann (10970682)

    منشور في 2024
    "…This penalty was proposed by Verzelen et al. and achieves optimal rates for changepoint detection and changepoint localization in a non-asymptotic scenario. Our proposed algorithm, Multiscale Functional Pruning Optimal Partitioning (Ms.FPOP), extends functional pruning ideas presented in Rigaill and Maidstone et al. to multiscale penalties. …"
  16. 96

    Optimization outcome for the Rosenbrock function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  17. 97

    Optimization outcome for the Rastrigin function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  18. 98

    2D Rastrigin function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  19. 99

    2D Levy function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"
  20. 100

    2D Rosenbrock function. حسب Shikun Chen (14625352)

    منشور في 2025
    "…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. The method has been successfully applied to real-world steel alloy optimization, where it achieved superior performance while maintaining all metallurgical composition constraints.…"