Showing 101 - 120 results of 4,775 for search '(( ((algorithm python) OR (algorithm b)) function ) OR ( algorithms python function ))*', query time: 0.32s Refine Results
  1. 101
  2. 102

    ClaritySpectra: Raman spectra analysis tool by Aaron Celestian (9395696)

    Published 2025
    “…</h2><p dir="ltr">Get the latest updates at <a href="https://github.com/aaroncelestian/ClaritySpectra" rel="noreferrer" target="_blank">https://github.com/aaroncelestian/ClaritySpectra </a></p><h3>SEARH-MATCH</h3><ul><li>Robust Search-Match of minerals/plastics, and it has lots of optional filters.</li><li>Four algorithms to choose from: Correlation, Peaks only, Correlation+Peaks, and Machine Learning dynamic time warping for those spectra that don't want to cooperate</li><li>A nice spectral comparison window with database search/add features to overlay spectra</li><li>Difference curve so you can see what fits and what doesn’t</li><li>And a new <b>experimental</b> feature: Predictive chemistry heatmaps based on spectral correlations.…”
  3. 103
  4. 104
  5. 105
  6. 106
  7. 107
  8. 108
  9. 109
  10. 110

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
  11. 111
  12. 112
  13. 113

    DataSheet1_Multi_Scale_Tools: A Python Library to Exploit Multi-Scale Whole Slide Images.PDF by Niccolò Marini (11247936)

    Published 2021
    “…<p>Algorithms proposed in computational pathology can allow to automatically analyze digitized tissue samples of histopathological images to help diagnosing diseases. …”
  14. 114

    Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses by Dominykas Lukauskis (14143149)

    Published 2022
    “…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …”
  15. 115

    Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses by Dominykas Lukauskis (14143149)

    Published 2022
    “…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …”
  16. 116

    Open Binding Pose Metadynamics: An Effective Approach for the Ranking of Protein–Ligand Binding Poses by Dominykas Lukauskis (14143149)

    Published 2022
    “…OpenBPMD is powered by the OpenMM simulation engine and uses a revised scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the performance of the original BPMD. …”
  17. 117
  18. 118
  19. 119
  20. 120