Showing 121 - 140 results of 4,450 for search '(( ((algorithm python) OR (algorithm both)) function ) OR ( algorithm could function ))*', query time: 0.57s Refine Results
  1. 121

    ADT: A Generalized Algorithm and Program for Beyond Born–Oppenheimer Equations of “<i>N</i>” Dimensional Sub-Hilbert Space by Koushik Naskar (7510592)

    Published 2020
    “…In order to overcome such shortcoming, we develop a generalized algorithm, “ADT” to generate the nonadiabatic equations through symbolic manipulation and to construct highly accurate diabatic surfaces for molecular processes involving excited electronic states. …”
  2. 122
  3. 123
  4. 124
  5. 125
  6. 126

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…<p dir="ltr">The first algorithm for segmentation and localization (see PathOlOgics_script_1; segment & localize using a pen) relied on manually tracing the borders of each cell using a digital pen tool on a big touchscreen display showing source images/patches. …”
  7. 127

    Algorithm of the brightness scale calibration experiment. by Krzysztof Petelczyc (3954203)

    Published 2024
    “…<p>In the algorithm, the following variables were used: “I” denotes the current luminous intensity of the reference diode, “inc” denotes the current difference between reference and target diode luminous intensity; “cnt” is the current number of performed trials, while “correct” is a counter of correct answers in cnt trials, both of them are counted separately for every settings of I and inc. …”
  8. 128

    Gillespie algorithm simulation parameters. by Nicholas H. Vitale (20469289)

    Published 2024
    “…Both the ensemble and stochastic models presented in this work have been verified using Monte Carlo molecular dynamic simulations that utilize the Gillespie algorithm. …”
  9. 129

    Scheduling time of five algorithms. by Huichao Guo (14515171)

    Published 2025
    “…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
  10. 130

    Convergence speed of five algorithms. by Huichao Guo (14515171)

    Published 2025
    “…The experimental results show that compared with the traditional particle swarm optimization algorithm, NACFPSO performs well in both convergence speed and scheduling time, with an average convergence speed of 81.17 iterations and an average scheduling time of 200.00 minutes; while the average convergence speed of the particle swarm optimization algorithm is 82.17 iterations and an average scheduling time of 207.49 minutes. …”
  11. 131
  12. 132

    Multi-algorithm comparison figure. by Dawei Wang (471687)

    Published 2025
    “…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
  13. 133

    Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy by Yujin Wu (2901128)

    Published 2021
    “…We also describe a novel hybrid searching algorithm that combines both molecular dynamics (MD)-based simulated annealing and genetic algorithm crossovers to address the enhanced sampling of the increased search space. …”
  14. 134

    Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy by Yujin Wu (2901128)

    Published 2021
    “…We also describe a novel hybrid searching algorithm that combines both molecular dynamics (MD)-based simulated annealing and genetic algorithm crossovers to address the enhanced sampling of the increased search space. …”
  15. 135

    A Genetic Algorithm Approach for Compact Wave Function Representations in Spin-Adapted Bases by Maru Song (22593561)

    Published 2025
    “…Crucially, we propose fitness functions based on approximate measures of the wave function compactness, which enable inexpensive genetic algorithm searches. …”
  16. 136
  17. 137
  18. 138
  19. 139

    The iteration curve of the test function. by Jian Kong (164512)

    Published 2024
    “…The directional preference algorithm could further provide more valuable solutions on the basis of adaptive genetic algorithms. …”
  20. 140