Showing 161 - 180 results of 442 for search '(( ((algorithm python) OR (algorithm etc)) function ) OR ( algorithm python function ))*', query time: 0.36s Refine Results
  1. 161

    CageCavityCalc (<i>C</i>3): A Computational Tool for Calculating and Visualizing Cavities in Molecular Cages by Vicente Martí-Centelles (1422415)

    Published 2024
    “…Efficiently predicting such properties is critical for accelerating the discovery of novel functional cages. Herein, we introduce <i>CageCavityCalc</i> (<i>C</i>3), a Python-based tool for calculating the cavity size of molecular cages. …”
  2. 162

    CageCavityCalc (<i>C</i>3): A Computational Tool for Calculating and Visualizing Cavities in Molecular Cages by Vicente Martí-Centelles (1422415)

    Published 2024
    “…Efficiently predicting such properties is critical for accelerating the discovery of novel functional cages. Herein, we introduce <i>CageCavityCalc</i> (<i>C</i>3), a Python-based tool for calculating the cavity size of molecular cages. …”
  3. 163

    Multidomain, Automated Photopatterning of DNA-functionalized Hydrogels (MAPDH). by Moshe Rubanov (7289156)

    Published 2024
    “…<b>B)</b> Pseudocode for MAPDH in Python. The algorithm takes as input the vials that will be flowed through the patterning chamber. …”
  4. 164

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
  5. 165
  6. 166
  7. 167
  8. 168
  9. 169
  10. 170
  11. 171
  12. 172
  13. 173
  14. 174
  15. 175
  16. 176
  17. 177

    Antibody challenge outcomes. by Andrea Blasco (7439102)

    Published 2019
    “…Also shown is the benchmark algorithm implemented in Python (A1) and C++ (A2); note that benchmark algorithms A1 and A2 have perfect accuracy (<i>ACC</i> equal to unity). …”
  18. 178
  19. 179
  20. 180