Search alternatives:
algorithm python » algorithms within (Expand Search), algorithm both (Expand Search)
algorithm i » algorithm ai (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
i function » _ function (Expand Search), a function (Expand Search), link function (Expand Search)
algorithm python » algorithms within (Expand Search), algorithm both (Expand Search)
algorithm i » algorithm ai (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
i function » _ function (Expand Search), a function (Expand Search), link function (Expand Search)
-
1
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
Published 2025“…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…”
-
2
EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit
Published 2025“…For a RDKit molecule, it provides (i) a PNG binary string with an image of the molecule with color-highlighted functional groups; (ii) a list of sets of atom indices (idx), each set corresponding to a functional group; (iii) a list of pseudo-SMILES canonicalized strings for the full functional groups; and (iv) a list of RDKit labeled mol objects, one for each full functional group. …”
-
3
FAR-1: A Fast Integer Reduction Algorithm Compared to Collatz and Half-Collatz
Published 2025Subjects: -
4
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …”
-
5
-
6
-
7
-
8
Linear-regression-based algorithms succeed at identifying the correct functional groups in synthetic data, and multi-group algorithms recover more information.
Published 2024“…<p>(A), (B) Algorithm performance, evaluated over 50 simulated datasets generated as described in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1012590#pcbi.1012590.g001" target="_blank">Fig 1</a> with <i>N</i> = 3 true groups, 900 samples and 10% simulated measurement noise. …”
-
9
-
10
-
11
Distribution of cross correlations in functional connectivity in ABIDE sample.
Published 2024Subjects: -
12
-
13
-
14
-
15
Working time of different processes (<i>h</i>).
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
16
Core genes were selected through PPI analysis based on three algorithms.
Published 2024“…<p>Among 46 DEGs whose expression significantly changed in A549 and BEAS-2B cell lines, the core genes were selected using three algorithms: MCC, MNC, and DEGREE. <b>(A)</b> The top 10 genes were prioritized using MCC analysis, which identifies the largest clique within the PPI network and selects the central proteins within the clique. …”
-
17
Image 1_Construction of a right ventricular function assessment model in patients undergoing invasive mechanical ventilation based on VExUS grading and the classification and regression tree algorithm.pdf
Published 2025“…Objective<p>Investigate the correlation between right ventricular function ultrasound indicators and the Venous Excess Ultrasound (VExUS) grading system in patients undergoing invasive mechanical ventilation (IMV), and develop a right ventricular function assessment model using VExUS grading and the Classification and Regression Tree (CART) algorithm.…”
-
18
-
19
-
20