Showing 121 - 140 results of 224 for search '(( ((python broad) OR (python based)) implementation ) OR ( python code implementation ))', query time: 0.46s Refine Results
  1. 121

    Comparison data 3 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  2. 122

    Sample data for <i>Telmatochromis temporalis</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  3. 123

    Comparison data 4 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  4. 124

    Comparison data 1 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  5. 125

    Comparison data 2 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  6. 126

    Comparison data 5 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  7. 127

    Comparison data 6 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  8. 128

    Spherical Texture method design. by Oane Gros (20636735)

    Published 2025
    “…<b>H)</b> The <i>Spherical Texture</i> extraction is implemented as a Python package and it is directly available in <i>ilastik</i>, allowing for its adoption into the Object Classification workflow. …”
  9. 129
  10. 130

    A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification by Mohammed Nasser Al-Andoli (21431681)

    Published 2025
    “…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…”
  11. 131

    Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection by Huichao Yin (14589020)

    Published 2025
    “…<p dir="ltr">Python image preprocessing and model implementation for research of "Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection".…”
  12. 132

    Core-Based Smart Sampling Framework: A Theoretical and Experimental Study on Randomized Partitioning for SAT Problems by DURGHAM QARALLEH (21904172)

    Published 2025
    “…We provide theoretical guarantees on complexity reduction and probabilistic completeness, apply the method to SAT instances, and evaluate its performance using experimental Python implementations. The results show that smart sampling drastically reduces the effective complexity of SAT problems and offers new insights into the structure of NP-complete problems.…”
  13. 133

    Reinforcement Learning based traffic steering inOpen Radio Access Network (ORAN)- oran-ts GitHub Repository by Aaradhy Sharma (21503465)

    Published 2025
    “…It features a modular Python framework implementing various RL agents (Q-Learning, SARSA, N-Step SARSA, DQN) and a traditional baseline evaluated in a realistic cellular network environment. …”
  14. 134

    Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx by Piyachat Udomwong (22563212)

    Published 2025
    “…Its efficiency and scalability make it well-suited for early-stage antibody discovery, repertoire profiling, and therapeutic design, particularly in the absence of structural data. The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
  15. 135

    Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files) by Wubin Ding (11823941)

    Published 2025
    “…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…”
  16. 136

    Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
  17. 137

    Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
  18. 138

    Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
  19. 139

    Data Sheet 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
  20. 140