Search alternatives:
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python based » method based (Expand Search), person based (Expand Search)
python time » python files (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python based » method based (Expand Search), person based (Expand Search)
python time » python files (Expand Search)
-
101
The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network"
Published 2024“…</li></ul><h2>Codes</h2><p dir="ltr">This repository contains the following Python codes:</p><ul><li>`data_processing.py`: Contains the implementation of data processing and feature extraction. …”
-
102
MATH_code : False Data Injection Attack Detection in Smart Grids based on Reservoir Computing
Published 2025“…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…”
-
103
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…<h2>A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation</h2><p><br></p><p dir="ltr">This is the implementation for the paper "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation".…”
-
104
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…<h2>A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation</h2><p><br></p><p dir="ltr">This is the implementation for the paper "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation".…”
-
105
Core-Based Smart Sampling Framework: A Theoretical and Experimental Study on Randomized Partitioning for SAT Problems
Published 2025“…We provide theoretical guarantees on complexity reduction and probabilistic completeness, apply the method to SAT instances, and evaluate its performance using experimental Python implementations. The results show that smart sampling drastically reduces the effective complexity of SAT problems and offers new insights into the structure of NP-complete problems.…”
-
106
-
107
Reinforcement Learning based traffic steering inOpen Radio Access Network (ORAN)- oran-ts GitHub Repository
Published 2025“…It features a modular Python framework implementing various RL agents (Q-Learning, SARSA, N-Step SARSA, DQN) and a traditional baseline evaluated in a realistic cellular network environment. …”
-
108
Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series
Published 2025“…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
-
109
Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2)
Published 2025“…The samples (SRR36268464, SRR36225071) were retrieved from the NCBI Sequence Read Archive (SRA) and represent publicly available, real-world viral specimens collected during the final month of 2025, <b>the most recent temporal window available at the time of analysis.</b></p><p><br></p><p dir="ltr">Processing was performed using the PEMI-ESC v2.0 bioinformatics pipeline (Python-based, open-source methodology), which includes read quality control (fastp), alignment to NC_045512.2 (BWA-MEM), variant calling (iVar, bcftools), Spike protein reconstruction, and codon-resolved interrogation of five canonical escape positions: R346, S371, K444, F456, and F486.…”
-
110
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
-
111
Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
-
112
Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
-
113
-
114
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
Published 2025“…Its efficiency and scalability make it well-suited for early-stage antibody discovery, repertoire profiling, and therapeutic design, particularly in the absence of structural data. The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
-
115
Data Sheet 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
-
116
-
117
-
118
Summary of Tourism Dataset.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
119
Segment-wise Spending Analysis.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
120
Hyperparameter Parameter Setting.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”