Search alternatives:
after implementing » after implementation (Expand Search), model implementing (Expand Search)
code » core (Expand Search)
after implementing » after implementation (Expand Search), model implementing (Expand Search)
code » core (Expand Search)
-
121
Internal changes of the specimen of 0.87 to 0.9.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
122
Internal changes of the specimen of 0.74 to 0.76.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
123
Internal changes of the specimen 1.55 to 1.60.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
124
Internal changes of the specimen of 1.70 to 1.75.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
125
Internal changes of the specimen of 0.89 to 1.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
126
HCC Evaluation Dataset and Results
Published 2024“…The only requirement for running this script is a Python 3.6+ interpreter as well as an installation of the <code>numpy</code> package. …”
-
127
Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis
Published 2025“…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…”
-
128
The artifacts and data for the paper "DD4AV: Detecting Atomicity Violations in Interrupt-Driven Programs with Guided Concolic Execution and Filtering" (OOPSLA 2025)
Published 2025“…</p><pre><pre>sudo apt-get install -y wget git build-essential python3 python python-pip python3-pip tmux cmake libtool libtool-bin automake autoconf autotools-dev m4 autopoint libboost-dev help2man gnulib bison flex texinfo zlib1g-dev libexpat1-dev libfreetype6 libfreetype6-dev libbz2-dev liblzo2-dev libtinfo-dev libssl-dev pkg-config libswscale-dev libarchive-dev liblzma-dev liblz4-dev doxygen libncurses5 vim intltool gcc-multilib sudo --fix-missing<br></pre></pre><pre><pre>pip install numpy && pip3 install numpy && pip3 install sysv_ipc<br></pre></pre><h4><b>Download the Code</b></h4><p dir="ltr">Download <b>DD4AV</b> from the Figshare website to your local machine and navigate to the project directory:</p><pre><pre>cd DD4AV<br></pre></pre><h4><b>Configure Environment and Install the Tool</b></h4><p dir="ltr">For convenience, we provide shell scripts to automate the installation process. …”
-
129
Artifact for the IJCAI 2024 paper "Solving Long-run Average Reward Robust MDPs via Stochastic Games"
Published 2024“…<br></pre></pre><h2>Structure and How to run</h2><p dir="ltr">There are four Python files in the repository.</p><pre><pre>(i) `StrategyIteration.py` is the backend code, containing the implementation of the RPPI algorithm described in the paper.…”
-
130
<b>Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population</b>
Published 2025“…<p dir="ltr">Contains</p><p dir="ltr">Final Analysis Output.xlsx: Current and reference concentrations of DRP, TP, NO3-N and TN along with pivot table analysis</p><p dir="ltr">Code: Python code used to implement the model in ArcGIS Pro.…”
-
131
Probabilistic-QSR-GeoQA
Published 2024“…</p><p><br></p><p><br></p><p dir="ltr"><b>Perquisites</b></p><p dir="ltr">Two spatial reasoning tools, SparQ for conventional reasoning and Probcog for probabilistic reasoning need to be installed:</p><p><br></p><p dir="ltr">- Probcog ( Follow the their github repo in https://github.com/opcode81/ProbCog)</p><p dir="ltr">- SparQ (Follow their manual in https://www.uni-bamberg.de/fileadmin/sme/SparQ/SparQ-Manual.pdf)</p><p><br></p><p><br></p><p dir="ltr"><b>Materials</b></p><p dir="ltr">This includes codes, data, evidence sets, and mln folders for two experiments:</p><p dir="ltr">- Code: This folder includes questionGenerator.py and answerExtraction.py for generating synthetic questions and post-processing of inferences from Probcog and SparQ reasoners. …”
-
132
A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification
Published 2025“…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…”
-
133
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
-
134
Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
-
135
Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
-
136
Data Sheet 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”
-
137
<b>Algorithm Pseudocode</b>
Published 2025“…The model generates point forecasts and forecast interval boundaries for short-term loads, providing important support for risk quantification and decision-making in power systems. The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …”
-
138
<b>Anonymous, runnable artifact for </b><b>Testing AI Applications Under Nondeterminism, Drift, and Resource Constraints: A Problem‑Driven Multi‑Layer Approach</b>
Published 2025“…</b> The anonymized archive includes a dependency‑free Python implementation of all five layers (oracle, coverage, drift mapping, prioritization, resource scheduling), an orchestrator, and synthetic datasets with 50 test cases per sub‑application (LLM assistant, retrieval with citation, vision calories, notification/social). …”
-
139
Curvature-Adaptive Embedding of Geographic Knowledge Graphs in Hyperbolic Space
Published 2025“…</p><h3>Requirements</h3><ul><li>Python 3.7</li><li>PyTorch 1.10.0 & CUDA 11.8</li></ul><h3>Main Result Running commands:</h3><p dir="ltr">Execute <code>.sh: bash .…”
-
140
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
Published 2025“…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …”