يعرض 101 - 120 نتائج من 186 نتيجة بحث عن '(( ((python code) OR (python tool)) implementation ) OR ( python files implementation ))', وقت الاستعلام: 0.25s تنقيح النتائج
  1. 101

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
  2. 102

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
  3. 103

    <b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b> حسب Pajtim Zariqi (22155799)

    منشور في 2025
    "…The workflow was implemented in Google Earth Engine (JavaScript API) and replicated in Python notebooks (Jupyter/Kaggle) for reproducibility.…"
  4. 104

    <b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b> حسب Marly G F Costa (19812192)

    منشور في 2025
    "…<p dir="ltr"><b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b></p><p dir="ltr">The code was developed in the Google Collaboratory environment, using Python version 3.7.13, with TensorFlow 2.8.2. …"
  5. 105
  6. 106

    Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b> حسب Zhou (20184816)

    منشور في 2025
    "…</p><p dir="ltr">GPU:NVIDIA GeForce RTX 3090 GPU</p><p dir="ltr">Bert-base-cased pre-trained model: https://huggingface.co/google-bert/bert-base-cased</p><p dir="ltr">python=3.7,pytorch=1.9.0,cudatoolkit=11.3.1,cudnn=8.9.7.29.…"
  7. 107

    Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files) حسب Wubin Ding (11823941)

    منشور في 2025
    "…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…"
  8. 108

    Single Cell DNA methylation data for Human Brain altas MajorType allc files (CG+CH) حسب Wubin Ding (11823941)

    منشور في 2025
    "…</p><p dir="ltr">PMID: 37824674</p><p dir="ltr"><br></p><p dir="ltr">How to download</p><p dir="ltr">To quickly download the whole folder, Python package pyfigshare can be implemented. please refer to pyfigshare documentation: https://github.com/DingWB/pyfigshare</p><p dir="ltr">for example: figshare download 28424780 -o downlnoaded_data</p>…"
  9. 109

    BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories حسب Elizaveta Mukhaleva (20602550)

    منشور في 2025
    "…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …"
  10. 110

    BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories حسب Elizaveta Mukhaleva (20602550)

    منشور في 2025
    "…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …"
  11. 111

    BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories حسب Elizaveta Mukhaleva (20602550)

    منشور في 2025
    "…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …"
  12. 112

    Data Sheet 1_COCαDA - a fast and scalable algorithm for interatomic contact detection in proteins using Cα distance matrices.pdf حسب Rafael Pereira Lemos (9104911)

    منشور في 2025
    "…Here, we introduce COCαDA (COntact search pruning by Cα Distance Analysis), a Python-based command-line tool for improving search pruning in large-scale interatomic protein contact analysis using alpha-carbon (Cα) distance matrices. …"
  13. 113

    HCC Evaluation Dataset and Results حسب Jens-Rene Giesen (18461928)

    منشور في 2024
    "…</p><h3>Report Script</h3><p dir="ltr">On the top-level directory you find a <code>report.py</code> file, which is an executable Python script. …"
  14. 114

    Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis حسب Alan Glanz (22109698)

    منشور في 2025
    "…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…"
  15. 115

    Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx حسب Piyachat Udomwong (22563212)

    منشور في 2025
    "…Its efficiency and scalability make it well-suited for early-stage antibody discovery, repertoire profiling, and therapeutic design, particularly in the absence of structural data. The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…"
  16. 116

    <b>Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population</b> حسب Richard McDowell (7311011)

    منشور في 2025
    "…<p dir="ltr">Contains</p><p dir="ltr">Final Analysis Output.xlsx: Current and reference concentrations of DRP, TP, NO3-N and TN along with pivot table analysis</p><p dir="ltr">Code: Python code used to implement the model in ArcGIS Pro.…"
  17. 117

    Artifact for the IJCAI 2024 paper "Solving Long-run Average Reward Robust MDPs via Stochastic Games" حسب Krishnendu Chatterjee (15367413)

    منشور في 2024
    "…<br></pre></pre><h2>Structure and How to run</h2><p dir="ltr">There are four Python files in the repository.</p><pre><pre>(i) `StrategyIteration.py` is the backend code, containing the implementation of the RPPI algorithm described in the paper.…"
  18. 118

    The artifacts and data for the paper "DD4AV: Detecting Atomicity Violations in Interrupt-Driven Programs with Guided Concolic Execution and Filtering" (OOPSLA 2025) حسب zixuan yuan (17602152)

    منشور في 2025
    "…</li><li><code><strong>wllvm</strong></code>: The third-party library project WLLVM provides tools for building whole-program LLVM bitcode files from unmodified C or C++ source packages.…"
  19. 119

    Probabilistic-QSR-GeoQA حسب Mohammad Kazemi (19442467)

    منشور في 2024
    "…</p><p><br></p><p><br></p><p dir="ltr"><b>Perquisites</b></p><p dir="ltr">Two spatial reasoning tools, SparQ for conventional reasoning and Probcog for probabilistic reasoning need to be installed:</p><p><br></p><p dir="ltr">- Probcog ( Follow the their github repo in https://github.com/opcode81/ProbCog)</p><p dir="ltr">- SparQ (Follow their manual in https://www.uni-bamberg.de/fileadmin/sme/SparQ/SparQ-Manual.pdf)</p><p><br></p><p><br></p><p dir="ltr"><b>Materials</b></p><p dir="ltr">This includes codes, data, evidence sets, and mln folders for two experiments:</p><p dir="ltr">- Code: This folder includes questionGenerator.py and answerExtraction.py for generating synthetic questions and post-processing of inferences from Probcog and SparQ reasoners. …"
  20. 120

    MCCN Case Study 3 - Select optimal survey locality حسب Donald Hobern (21435904)

    منشور في 2025
    "…</p><p dir="ltr">The dataset contains input files for the case study (source_data), RO-Crate metadata (ro-crate-metadata.json), results from the case study (results), and Jupyter Notebook (MCCN-CASE 3.ipynb)</p><h4><b>Research Activity Identifier (RAiD)</b></h4><p dir="ltr">RAiD: https://doi.org/10.26292/8679d473</p><h4><b>Case Studies</b></h4><p dir="ltr">This repository contains code and sample data for the following case studies. …"