Search alternatives:
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python time » python files (Expand Search)
code » core (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python time » python files (Expand Search)
code » core (Expand Search)
-
81
A game of life with dormancy - Code
Published 2024“…</p><ul><li>To run an animated simulation, use `python simulation.py'.</li><li>The implementation of Spore Life can be found in gol.py.…”
-
82
Simple implementation examples of agent AI on free energy calculation and phase-field simulation
Published 2025“…</p> <p>Using Gibbs energy calculations and diffusion simulations as examples, we demonstrated the implementation method and usefulness of simple agent AI, where sample python codes are distributed as supplemental materials.…”
-
83
-
84
Testing Code for JcvPCA and JsvCRP.
Published 2025“…<p>This file contains the code that implements both metrics in python and apply them on a simulated dataset.…”
-
85
Data and code for: Automatic fish scale analysis
Published 2025“…</p><h3>Includeed in this repository:</h3><ul><li><b>Raw data files:</b></li><li><code>comparison_all_scales.csv</code> – comparison_all_scales.csv - manually verified vs. automated measurements of 1095 coregonid scales</li></ul><ul><li><ul><li><code>Validation_data.csv</code> – manually measured scale data under binocular</li><li><code>Parameter_correction_numeric.csv</code> – calibration data (scale radius vs. fish length/weight)</li></ul></li><li><b>Statistical results:</b></li><li><ul><li><code>comparison_stats_core_variables.csv</code> – verification statistics (bias, relative error, limits of agreement)</li><li><code>Validation_statistics.csv</code> – summary statistics and model fits (manual vs. automated)</li></ul></li><li><b>Executable script (not GUI):</b></li><li><ul><li><code>Algorithm.py</code> – core processing module for scale feature extraction<br>→ <i>Note: The complete Coregon Analyzer application (incl. …”
-
86
A comparison between the static Python-based visualizations of the p65 activity in activated fibroblasts and the dynamic, HTML-based visualizations that use these same reduction me...
Published 2025“…<p><b>(a)</b> UMAP, t-SNE, PCA, and Diffmap were first generated using the Python libraries Scikit-learn, UMAP, and PyDiffmap within Jupyter to generate static graphs as a starting point. …”
-
87
Design and Implementation of a Browser-Based Toolfor Protecting Gaming Assets from UnauthorizedAccess
Published 2025“…<p dir="ltr">The project <b>“Design and Implementation of a Browser-Based Tool for Protecting Gaming Assets from Unauthorized Access”</b> focuses on developing a security-oriented software solution that safeguards digital game assets within browser environments.…”
-
88
Efficient, Hierarchical, and Object-Oriented Electronic Structure Interfaces for Direct Nonadiabatic Dynamics Simulations
Published 2025“…We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. …”
-
89
PTPC-UHT bounce
Published 2025“…<br>It contains the full Python implementation of the PTPC bounce model (<code>PTPC_UHT_bounce.py</code>) and representative outputs used to generate the figures in the paper. …”
-
90
Comparison data 7 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
91
Sample data for <i>Neolamprologus multifasciatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
92
Sample data for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
93
Comparison data 3 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
94
Sample data for <i>Telmatochromis temporalis</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
95
Comparison data 4 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
96
Comparison data 1 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
97
Comparison data 2 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
98
Comparison data 5 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
99
Comparison data 6 for <i>Lamprologus ocellatus</i>.
Published 2024“…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
-
100
Code and data for reproducing the results in the original paper of DML-Geo
Published 2025“…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…”