Showing 201 - 220 results of 295 for search '(( ((python model) OR (python code)) implementation ) OR ( python effective implementation ))', query time: 0.35s Refine Results
  1. 201

    Error reduction over time by the HOFA-SMC. by Asra Sarwat (22453794)

    Published 2025
    “…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
  2. 202

    Comparison of SMC techniques. by Asra Sarwat (22453794)

    Published 2025
    “…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
  3. 203

    Proposed HOFA-SMC with experimental validation. by Asra Sarwat (22453794)

    Published 2025
    “…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
  4. 204

    Missing Value Imputation in Relational Data Using Variational Inference by Simon Fontaine (7046618)

    Published 2025
    “…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
  5. 205
  6. 206

    Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis by Alan Glanz (22109698)

    Published 2025
    “…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…”
  7. 207

    Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif by Xiaobing Li (291454)

    Published 2025
    “…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
  8. 208

    Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif by Xiaobing Li (291454)

    Published 2025
    “…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
  9. 209

    Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx by Piyachat Udomwong (22563212)

    Published 2025
    “…The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
  10. 210

    Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning by Joan Alexander (17047170)

    Published 2025
    “…Establishing a framework for implementing and testing ML-based parameterizations in atmospheric models. …”
  11. 211

    Parallel Sampling of Decomposable Graphs Using Markov Chains on Junction Trees by Mohamad Elmasri (19421498)

    Published 2024
    “…We find that our parallel sampler yields improved mixing properties in comparison to the single-move variate, and outperforms current state-of-the-art methods in terms of accuracy and computational efficiency. The implementation of our work is available in the Python package parallelDG. …”
  12. 212

    Supporting data for "Software library to quantify the value of forecasts for decision-making: Case study on sensitivity to damages" by Laugesen et al. (2025) by Richard Laugesen (6480371)

    Published 2025
    “…<br></p><p dir="ltr">Journal paper introduces RUVPY, a Python software library which implements the Relative Utility Value (RUV) method. …”
  13. 213

    Spotted owl habitat quality maps and disturbance attribution analysis by Josh Barry (7573823)

    Published 2025
    “…<p dir="ltr">This dataset includes annual spatial maps of spotted owl nesting habitat quality in Southern California and an accompanying ArcPython script used to attribute negative annual habitat change to wildfire (Barry et al., 2025). …”
  14. 214

    Recursive generation of substructures using point data by Jackie R (18359715)

    Published 2025
    “…<p dir="ltr">The dataset contains generated substructure using POI in China, the pseudo code for the algorithm and python implement of the algorithm. …”
  15. 215

    MCCN Case Study 3 - Select optimal survey locality by Donald Hobern (21435904)

    Published 2025
    “…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
  16. 216

    <b>Altered cognitive processes shape tactile perception in autism.</b> (data) by Ourania Semelidou (19178362)

    Published 2025
    “…The perceptual decision-making setup was controlled by Bpod (Sanworks) through scripts in Python (PyBpod, https://pybpod.readthedocs.io/en/latest/). …”
  17. 217

    Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1 by Robert Zomer (12796235)

    Published 2025
    “…</p><p dir="ltr">The Python programming source code used to run the calculation of ET0 and AI is provided and available online on Figshare at:</p><p dir="ltr">https://figshare.com/articles/software/Global_Aridity_Index_and_Potential_Evapotranspiration_Climate_Database_v3_-_Algorithm_Code_Python_/20005589</p><p dir="ltr">Peer-Review Reference and Proper Citation:</p><p dir="ltr">Zomer, R.J.; Xu, J.; Trabuco, A. 2022. …”
  18. 218

    Data files accompanying our PLoS One publication by Peter Hinow (21810605)

    Published 2025
    “…The videos were digitized and the positional data were saved in .xlsx or .csv format, respectively. The python codes contain the numerical implementations of our mathematical models.…”
  19. 219

    Probabilistic-QSR-GeoQA by Mohammad Kazemi (19442467)

    Published 2024
    “…<p dir="ltr">The code and data are related to the paper Mohammad Kazemi Beydokhti, Matt Duckham, Amy L. …”
  20. 220