يعرض 281 - 286 نتائج من 286 نتيجة بحث عن '(( ((python model) OR (python code)) implementation ) OR ( python model implementation ))*', وقت الاستعلام: 0.42s تنقيح النتائج
  1. 281

    Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service) حسب U.S. Forest Service (17476914)

    منشور في 2025
    "…Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). …"
  2. 282

    Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2) حسب Tahir Bhatti (20961974)

    منشور في 2025
    "…Full source code and version details are available upon request.…"
  3. 283

    Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples حسب Derek Lam (11944213)

    منشور في 2025
    "…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …"
  4. 284

    Comprehensive Fluid and Gravitational Dynamics Script for General Symbolic Navier-Stokes Calculations and Validation حسب Stylianos Touloumidis (19938747)

    منشور في 2024
    "…It provides a flexible foundation on which theoretical assumptions can be validated, and practical calculations performed. Implemented in Python with symbolic calculations, the script facilitates in-depth analysis of complex flow patterns and makes advanced mathematical computations more accessible. …"
  5. 285

    Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds حسب Gloria Castañeda-Valencia (20758502)

    منشور في 2025
    "…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …"
  6. 286

    Core data حسب Baoqiang Chen (21099509)

    منشور في 2025
    "…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"