Showing 181 - 200 results of 297 for search '(( ((python model) OR (python code)) implementation ) OR ( python new implementation ))', query time: 0.53s Refine Results
  1. 181

    Comparison data 6 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  2. 182

    Linking Thermal Conductivity to Equations of State Using the Residual Entropy Scaling Theory by Zhuo Li (165589)

    Published 2024
    “…Besides, a detailed examination of the impact of the critical enhancement term on mixture calculations was conducted. To use our model easily, a software package written in Python is provided in the Supporting Information.…”
  3. 183

    Overview of deep learning terminology. by Aaron E. Maxwell (8840882)

    Published 2024
    “…This paper introduces the geodl R package, which supports pixel-level classification applied to a wide range of geospatial or Earth science data that can be represented as multidimensional arrays where each channel or band holds a predictor variable. geodl is built on the torch package, which supports the implementation of DL using the R and C++ languages without the need for installing a Python/PyTorch environment. …”
  4. 184
  5. 185

    Compiled Global Dataset on Digital Business Model Research by Dimas Fauzan Aryadefa (22123186)

    Published 2025
    “…</p><p dir="ltr">For the modeling component, annual publication growth is projected from 2025–2034 using a logistic growth model (S-curve) implemented in Python. …”
  6. 186

    Iterative Methods for Vecchia-Laplace Approximations for Latent Gaussian Process Models by Pascal Kündig (19824557)

    Published 2024
    “…In particular, we obtain a speed-up of an order of magnitude compared to Cholesky-based calculations and a 3-fold increase in prediction accuracy in terms of the continuous ranked probability score compared to a state-of-the-art method on a large satellite dataset. All methods are implemented in a free C++ software library with high-level Python and R packages. …”
  7. 187

    Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model by Marina Diachenko (19739092)

    Published 2025
    “…<p dir="ltr">The <i>zip</i> file contains the code for the functional excitation-inhibition ratio (fE/I) and theta-gamma (θ-γ) phase-amplitude coupling (PAC) analyses described in the paper titled "<b>Hippocampal and cortical activity reflect early </b><b>hyperexcitability</b><b> in an Alzheimer's mouse model</b>" submitted to <i>Brain Communications</i> in April 2025.…”
  8. 188

    Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil) by Amanda Bueno de Moraes (22559249)

    Published 2025
    “…The code implements a statistical–computational workflow for parameter selection (VIF, Bartlett and KMO tests, PCA and FA with <i>varimax</i>) and then trains and evaluates machine-learning models to predict three key physico-chemical indicators: turbidity, true color, and total iron. …”
  9. 189

    Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems by Lakshit Mathur (20894549)

    Published 2025
    “…The work advances national AI autonomy, real-time cognitive context modeling, and ethical human-AI integration.</p><p dir="ltr"><b>Availability</b> — The repository includes LaTeX sources, trained model checkpoints, Python/PyTorch code, and synthetic datasets. …”
  10. 190

    face recognation with Flask by Muammar, SST, M.Kom (21435692)

    Published 2025
    “…</li><li><b>Face Recognition Engine:</b> Compares detected faces to known faces using deep learning models (e.g., <code>face_recognition</code>, based on dlib’s ResNet).…”
  11. 191

    DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF by Shivani V. Pawar (20355171)

    Published 2024
    “…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …”
  12. 192

    DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF by Shivani V. Pawar (20355171)

    Published 2024
    “…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …”
  13. 193

    Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis by Alan Glanz (22109698)

    Published 2025
    “…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…”
  14. 194
  15. 195

    Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx by Piyachat Udomwong (22563212)

    Published 2025
    “…The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
  16. 196

    Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif by Xiaobing Li (291454)

    Published 2025
    “…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
  17. 197

    Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif by Xiaobing Li (291454)

    Published 2025
    “…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
  18. 198

    Missing Value Imputation in Relational Data Using Variational Inference by Simon Fontaine (7046618)

    Published 2025
    “…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
  19. 199

    Data and software for "Social networks affect redistribution decisions and polarization" by Milena Tsvetkova (11217969)

    Published 2025
    “…</p><p dir="ltr">The repository contains data in .csv and .xlsx format, model code in .nlogox Netlogo format, analysis code in .ipynb Jupyter notebooks, and helping code in .py Python files.…”
  20. 200

    Parallel Sampling of Decomposable Graphs Using Markov Chains on Junction Trees by Mohamad Elmasri (19421498)

    Published 2024
    “…We find that our parallel sampler yields improved mixing properties in comparison to the single-move variate, and outperforms current state-of-the-art methods in terms of accuracy and computational efficiency. The implementation of our work is available in the Python package parallelDG. …”