Search alternatives:
pre implementation » time implementation (Expand Search), _ implementation (Expand Search), new implementation (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
pre implementation » time implementation (Expand Search), _ implementation (Expand Search), new implementation (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
221
Artifact for the IJCAI 2024 paper "Solving Long-run Average Reward Robust MDPs via Stochastic Games"
Published 2024“…</p><h2>Dependencies</h2><p dir="ltr">In order to run the code the following dependencies must be met:</p><pre><pre>- Python 3 should be installed. …”
-
222
adnus
Published 2025“…<p dir="ltr">adnus (AdNuS): Advanced Number Systems</p><p dir="ltr">adnus is a Python library that provides an implementation of various advanced number systems. …”
-
223
<b>Data Availability</b>
Published 2025“…</p><p dir="ltr">Model Outputs & Validation:</p><p dir="ltr">Pre-trained MDN model weights and architecture files.…”
-
224
<b>Data Availability</b>
Published 2025“…</p><p dir="ltr">Model Outputs & Validation:</p><p dir="ltr">Pre-trained MDN model weights and architecture files.…”
-
225
<b>Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population</b>
Published 2025“…</p><p dir="ltr">Models: R code to explore different models for implementation via Python in ArcGIS</p><p dir="ltr">!…”
-
226
<b>Algorithm Pseudocode</b>
Published 2025“…The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …”
-
227
The artifacts and data for the paper "DD4AV: Detecting Atomicity Violations in Interrupt-Driven Programs with Guided Concolic Execution and Filtering" (OOPSLA 2025)
Published 2025“…</p><h3><b>Installation</b></h3><h4><b>install Dependencies</b></h4><p dir="ltr">Our artifact depends on several packages, please run the following command to install all necessary dependencies.</p><pre><pre>sudo apt-get install -y wget git build-essential python3 python python-pip python3-pip tmux cmake libtool libtool-bin automake autoconf autotools-dev m4 autopoint libboost-dev help2man gnulib bison flex texinfo zlib1g-dev libexpat1-dev libfreetype6 libfreetype6-dev libbz2-dev liblzo2-dev libtinfo-dev libssl-dev pkg-config libswscale-dev libarchive-dev liblzma-dev liblz4-dev doxygen libncurses5 vim intltool gcc-multilib sudo --fix-missing<br></pre></pre><pre><pre>pip install numpy && pip3 install numpy && pip3 install sysv_ipc<br></pre></pre><h4><b>Download the Code</b></h4><p dir="ltr">Download <b>DD4AV</b> from the Figshare website to your local machine and navigate to the project directory:</p><pre><pre>cd DD4AV<br></pre></pre><h4><b>Configure Environment and Install the Tool</b></h4><p dir="ltr">For convenience, we provide shell scripts to automate the installation process. …”
-
228
A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification
Published 2025“…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…”
-
229
IGD-cyberbullying-detection-AI
Published 2024“…</li></ul><h2>Installation</h2><ol><li>Clone the repository:<pre>git clone https://github.com/BryanSJamesDev/IGD-cyberbullying-detection-AI<br>cd IGD-cyberbullying-detection-AI</pre></li><li>Install the required dependencies:<pre>pip install -r requirements.txt</pre></li></ol><h2>Running the Code</h2><ol><li><b>Cyberbullying Prediction</b>:</li><li><ul><li>Open the <code>Cyberbullying.ipynb</code> notebook and run the cells in order to train and evaluate the deep learning models on the provided datasets.…”
-
230
Curvature-Adaptive Embedding of Geographic Knowledge Graphs in Hyperbolic Space
Published 2025“…</p><h3>Requirements</h3><ul><li>Python 3.7</li><li>PyTorch 1.10.0 & CUDA 11.8</li></ul><h3>Main Result Running commands:</h3><p dir="ltr">Execute <code>.sh: bash .…”
-
231
Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series
Published 2025“…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
-
232
kececilayout
Published 2025“…<p dir="ltr"><b>Kececi Layout (Keçeci Yerleşimi)</b>: A deterministic graph layout algorithm designed for visualizing linear or sequential structures with a characteristic "zig-zag" or "serpentine" pattern.</p><p dir="ltr"><i>Python implementation of the Keçeci layout algorithm for graph visualization.…”
-
233
Gene Editing using Transformer Architecture
Published 2025“…</p><p dir="ltr">Once TASAG detects a deviation from a reference sequence (e.g., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …”
-
234
Leveraging explainable causal artificial intelligence to study forest gross primary productivity dynamics in China's protected areas
Published 2025“…<p dir="ltr">A Python script used for modeling forest GPP in China´s Protected Areas, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), implementation of four machine learning models to predict forest GPP, XAI and causality analysis.…”
-
235
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
Published 2025“…Includes imputation statistics, data dictionary, and the Python imputation code (Imputation_Air_Pollutants_NABEL.py). …”
-
236
Concurrent spin squeezing and field tracking with machine learning
Published 2025“…<p dir="ltr">The dataset contains:</p><ol><li>Steady_squeezing.zip <b>a)</b> data for steady squeezing data and characteraztion <b>b)</b> data for pulse RF magnetormeter</li><li>Tracking1.zip <b>a)</b> data of OU process for Deep learning <b>b)</b> data of OU-jump process for Deep learning</li><li>Tracking2.zip <b>a)</b> data of white noise process in backaction experiment <b>b) </b>data of white noise process in rearrange experiment</li><li>Code <b>a)</b> Randomly signal generating code <b>b)</b> Deep learning codec.data pre-processing code</li></ol><p dir="ltr">The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
-
237
Concurrent spin squeezing and field tracking with machine learning
Published 2025“…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
-
238
Automatic data reduction for the typical astronomer
Published 2025“…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …”
-
239
Online Resource: Reservoir Computing as a Promising Approach for False Data Injection Attack Detection in Smart Grids
Published 2025“…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…”
-
240
Table & Figure.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks
Published 2025“…Supplementary Materials</p> <p><br></p> <p>Experimental protocols and study design details</p> <p><br></p> <p>Questionnaires, surveys, or rubrics used in the study</p> <p><br></p> <p>Educational materials related to HOTS-based mathematics tasks</p> <p><br></p> <p><br></p> <p><br></p> <p>3. Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …”