يعرض 81 - 100 نتائج من 294 نتيجة بحث عن '(( ((python model) OR (python code)) implementing ) OR ( python files implementation ))', وقت الاستعلام: 0.24s تنقيح النتائج
  1. 81
  2. 82

    Example ALAAMEE goodness-of-fit output. حسب Alex Stivala (8356257)

    منشور في 2024
    الموضوعات:
  3. 83

    ZILLNB_Model حسب Qinhuan Luo (21288548)

    منشور في 2025
    "…<p dir="ltr">Acquire latent variables using deep-learning based model implemented in python</p>…"
  4. 84
  5. 85
  6. 86
  7. 87

    Code حسب Baoqiang Chen (21099509)

    منشور في 2025
    "…</p><p><br></p><p dir="ltr">For the 5′ UTR library, we developed a Python script to extract sequences and Unique Molecular Identifiers (UMIs) from the FASTQ files. …"
  8. 88
  9. 89
  10. 90
  11. 91

    Scripts, data and figures underpinning 'Towards the Creation of Legible Octilinear Power Grid Diagrams Using Mixed Integer Linear Programming' حسب Paul Cuffe (2937081)

    منشور في 2024
    "…<p dir="ltr">These Python notebooks implement the techniques described in the paper "Towards the Creation of Legible Octilinear Power Grid Diagrams Using Mixed Integer Linear Programming".…"
  12. 92

    Code and data for reproducing the results in the original paper of DML-Geo حسب Pengfei CHEN (8059976)

    منشور في 2025
    "…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…"
  13. 93

    Data files accompanying our PLoS One publication حسب Peter Hinow (21810605)

    منشور في 2025
    "…The videos were digitized and the positional data were saved in .xlsx or .csv format, respectively. The python codes contain the numerical implementations of our mathematical models.…"
  14. 94

    Efficient, Hierarchical, and Object-Oriented Electronic Structure Interfaces for Direct Nonadiabatic Dynamics Simulations حسب Sascha Mausenberger (22225772)

    منشور في 2025
    "…We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. …"
  15. 95

    Reproducible Code and Data for figures حسب Bonyad Ahmadi (20750327)

    منشور في 2025
    "…</i></p><p dir="ltr">It contains:</p><p dir="ltr">✅ <b>Python Code</b> – Scripts used for data preprocessing, and visualization.…"
  16. 96
  17. 97

    Simulation Code and Raw Data حسب Melih Özkurt (22278520)

    منشور في 2025
    "…<p dir="ltr">Reproducible code (Python) implementing a symmetrized split-step Fourier method (SSFM), with configuration files for all scans. …"
  18. 98

    software code of NeoDesign حسب Wenqian Yu (19730101)

    منشور في 2024
    "…Before running the program, it is necessary to check or download python packages and local functions as follow:</p><ul><li>gor4</li><li>mhcflurry</li><li>NetMHCpan4.1</li><li>NetChop3.1</li><li>pepsickle</li><li>hmmer(>3.4)</li></ul><h3>See the read.md file for instructions on how to use the code.…"
  19. 99

    The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network" حسب Chongshan Wan (19247614)

    منشور في 2024
    "…</li><li>`test_GTN.py`: Contains the code for model inference and lane extraction.</li></ul><h2>Running the Code</h2><h3><b>Data processing and feature extraction</b></h3><pre>python run_process.py</pre><p dir="ltr">This step processes trajectory data, extracts graph node features and edge features, and saves them as CSV files in the `processed_data` folder.…"
  20. 100

    Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan) حسب Winston Yap (13771969)

    منشور في 2025
    "…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …"