Showing 101 - 120 results of 294 for search '(( ((python model) OR (python code)) implementing ) OR ( python files implementation ))', query time: 0.41s Refine Results
  1. 101

    RealBench: A Repo-Level Code Generation Benchmark Aligned with Real-World Software Development Practices by RealBench RealBench (22275393)

    Published 2025
    “…<br>│ │ └── uml_dag.py # UML dependency graph analysis.<br>│ ├── model_gen/ # Code generation using various LLMs.<br>│ │ ├── generate/ # LLM inference implementations.…”
  2. 102

    DA-Faster-RCNN code by Seunghyeon Wang (16500132)

    Published 2025
    “…The implementation is written in Python using PyTorch and Detectron2.…”
  3. 103
  4. 104

    <b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b> by Pajtim Zariqi (22155799)

    Published 2025
    “…The workflow was implemented in Google Earth Engine (JavaScript API) and replicated in Python notebooks (Jupyter/Kaggle) for reproducibility.…”
  5. 105

    A game of life with dormancy - Code by Daniel Henrik Nevermann (20376933)

    Published 2024
    “…</p><ul><li>To run an animated simulation, use `python simulation.py'.</li><li>The implementation of Spore Life can be found in gol.py.…”
  6. 106

    Simple implementation examples of agent AI on free energy calculation and phase-field simulation by Toshiyuki Koyama (22828581)

    Published 2025
    “…</p> <p>Using Gibbs energy calculations and diffusion simulations as examples, we demonstrated the implementation method and usefulness of simple agent AI, where sample python codes are distributed as supplemental materials.…”
  7. 107

    Data and code for: Automatic fish scale analysis by Christian Vogelmann (21646472)

    Published 2025
    “…</p><h3>Includeed in this repository:</h3><ul><li><b>Raw data files:</b></li><li><code>comparison_all_scales.csv</code> – comparison_all_scales.csv - manually verified vs. automated measurements of 1095 coregonid scales</li></ul><ul><li><ul><li><code>Validation_data.csv</code> – manually measured scale data under binocular</li><li><code>Parameter_correction_numeric.csv</code> – calibration data (scale radius vs. fish length/weight)</li></ul></li><li><b>Statistical results:</b></li><li><ul><li><code>comparison_stats_core_variables.csv</code> – verification statistics (bias, relative error, limits of agreement)</li><li><code>Validation_statistics.csv</code> – summary statistics and model fits (manual vs. automated)</li></ul></li><li><b>Executable script (not GUI):</b></li><li><ul><li><code>Algorithm.py</code> – core processing module for scale feature extraction<br>→ <i>Note: The complete Coregon Analyzer application (incl. …”
  8. 108
  9. 109
  10. 110
  11. 111
  12. 112
  13. 113
  14. 114
  15. 115
  16. 116
  17. 117
  18. 118
  19. 119
  20. 120