Search alternatives:
files implementation » time implementation (Expand Search), pilot implementation (Expand Search), assess implementation (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
files implementation » time implementation (Expand Search), pilot implementation (Expand Search), assess implementation (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
1
-
2
-
3
-
4
-
5
Five Operator Lattice Simulation
Published 2025“…</p><p dir="ltr">Running the included file <code>five_operator_lattice_sim.py</code> (Python 3.14 + NumPy 2.1) reproduces the dynamic interactions and figures reported in Appendix A of the paper, generating time-series data that demonstrate operator balance, instability, and renewal cycles.…”
-
6
-
7
-
8
PTPC-UHT bounce
Published 2025“…<br>It contains the full Python implementation of the PTPC bounce model (<code>PTPC_UHT_bounce.py</code>) and representative outputs used to generate the figures in the paper. …”
-
9
-
10
-
11
Code and data for reproducing the results in the original paper of DML-Geo
Published 2025“…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…”
-
12
-
13
Reproducible Code and Data for figures
Published 2025“…</i></p><p dir="ltr">It contains:</p><p dir="ltr">✅ <b>Python Code</b> – Scripts used for data preprocessing, and visualization.…”
-
14
The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network"
Published 2024“…</li><li>`test_GTN.py`: Contains the code for model inference and lane extraction.</li></ul><h2>Running the Code</h2><h3><b>Data processing and feature extraction</b></h3><pre>python run_process.py</pre><p dir="ltr">This step processes trajectory data, extracts graph node features and edge features, and saves them as CSV files in the `processed_data` folder.…”
-
15
Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan)
Published 2025“…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
-
16
RealBench: A Repo-Level Code Generation Benchmark Aligned with Real-World Software Development Practices
Published 2025“…<br>│ │ └── uml_dag.py # UML dependency graph analysis.<br>│ ├── model_gen/ # Code generation using various LLMs.<br>│ │ ├── generate/ # LLM inference implementations.…”
-
17
-
18
Data and code for: Automatic fish scale analysis
Published 2025“…</p><h3>Includeed in this repository:</h3><ul><li><b>Raw data files:</b></li><li><code>comparison_all_scales.csv</code> – comparison_all_scales.csv - manually verified vs. automated measurements of 1095 coregonid scales</li></ul><ul><li><ul><li><code>Validation_data.csv</code> – manually measured scale data under binocular</li><li><code>Parameter_correction_numeric.csv</code> – calibration data (scale radius vs. fish length/weight)</li></ul></li><li><b>Statistical results:</b></li><li><ul><li><code>comparison_stats_core_variables.csv</code> – verification statistics (bias, relative error, limits of agreement)</li><li><code>Validation_statistics.csv</code> – summary statistics and model fits (manual vs. automated)</li></ul></li><li><b>Executable script (not GUI):</b></li><li><ul><li><code>Algorithm.py</code> – core processing module for scale feature extraction<br>→ <i>Note: The complete Coregon Analyzer application (incl. …”
-
19
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
Published 2025“…</p><p dir="ltr">2. 28pd.py: Micro-emotion detection and annotation code based on pytorch.</p><p dir="ltr">3. 55770-1.pth: Model trained on the Goemotions dataset based on the BERT model (emotion energy level intensity is a value between 0-1).…”
-
20