Search alternatives:
model implementing » model implemented (Expand Search), model implementation (Expand Search), model representing (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
model implementing » model implemented (Expand Search), model implementation (Expand Search), model representing (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
281
Comprehensive Fluid and Gravitational Dynamics Script for General Symbolic Navier-Stokes Calculations and Validation
Published 2024“…It provides a flexible foundation on which theoretical assumptions can be validated, and practical calculations performed. Implemented in Python with symbolic calculations, the script facilitates in-depth analysis of complex flow patterns and makes advanced mathematical computations more accessible. …”
-
282
Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds
Published 2025“…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …”
-
283
Mean Annual Habitat Quality and Its Driving Variables in China (1990–2018)
Published 2025“…</p><p dir="ltr">(HQ: Habitat Quality; CZ: Climate Zone; FFI: Forest Fragmentation Index; GPP: Gross Primary Productivity; Light: Nighttime Lights; PRE: Mean Annual Precipitation Sum; ASP: Aspect; RAD: Solar Radiation; SLOPE: Slope; TEMP: Mean Annual Temperature; SM: Soil Moisture)</p><p dir="ltr"><br>A Python script used for modeling habitat quality, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), and implementation of four machine learning models to predict habitat quality.…”
-
284
Core data
Published 2025“…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
-
285
Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service)
Published 2025“…Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). …”
-
286
Gene Editing using Transformer Architecture
Published 2025“…., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …”