بدائل البحث:
model implementing » model implemented (توسيع البحث), model implementation (توسيع البحث), model representing (توسيع البحث)
python model » python tool (توسيع البحث), action model (توسيع البحث), motion model (توسيع البحث)
model implementing » model implemented (توسيع البحث), model implementation (توسيع البحث), model representing (توسيع البحث)
python model » python tool (توسيع البحث), action model (توسيع البحث), motion model (توسيع البحث)
-
41
Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model
منشور في 2025"…<p dir="ltr">The <i>zip</i> file contains the code for the functional excitation-inhibition ratio (fE/I) and theta-gamma (θ-γ) phase-amplitude coupling (PAC) analyses described in the paper titled "<b>Hippocampal and cortical activity reflect early </b><b>hyperexcitability</b><b> in an Alzheimer's mouse model</b>" submitted to <i>Brain Communications</i> in April 2025.…"
-
42
Data and code for: Automatic fish scale analysis
منشور في 2025"…</p><h3>Includeed in this repository:</h3><ul><li><b>Raw data files:</b></li><li><code>comparison_all_scales.csv</code> – comparison_all_scales.csv - manually verified vs. automated measurements of 1095 coregonid scales</li></ul><ul><li><ul><li><code>Validation_data.csv</code> – manually measured scale data under binocular</li><li><code>Parameter_correction_numeric.csv</code> – calibration data (scale radius vs. fish length/weight)</li></ul></li><li><b>Statistical results:</b></li><li><ul><li><code>comparison_stats_core_variables.csv</code> – verification statistics (bias, relative error, limits of agreement)</li><li><code>Validation_statistics.csv</code> – summary statistics and model fits (manual vs. automated)</li></ul></li><li><b>Executable script (not GUI):</b></li><li><ul><li><code>Algorithm.py</code> – core processing module for scale feature extraction<br>→ <i>Note: The complete Coregon Analyzer application (incl. …"
-
43
Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil)
منشور في 2025"…The code implements a statistical–computational workflow for parameter selection (VIF, Bartlett and KMO tests, PCA and FA with <i>varimax</i>) and then trains and evaluates machine-learning models to predict three key physico-chemical indicators: turbidity, true color, and total iron. …"
-
44
Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems
منشور في 2025"…The work advances national AI autonomy, real-time cognitive context modeling, and ethical human-AI integration.</p><p dir="ltr"><b>Availability</b> — The repository includes LaTeX sources, trained model checkpoints, Python/PyTorch code, and synthetic datasets. …"
-
45
face recognation with Flask
منشور في 2025"…</li><li><b>Face Recognition Engine:</b> Compares detected faces to known faces using deep learning models (e.g., <code>face_recognition</code>, based on dlib’s ResNet).…"
-
46
MATH_code : False Data Injection Attack Detection in Smart Grids based on Reservoir Computing
منشور في 2025"…</li><li><b>4_final_models_pipeline.ipynb</b><br>The final implementation pipeline that loads the data, applies preprocessing and encoding (e.g., latency or ISI), trains the detection models, and stores performance metrics.…"
-
47
Monte Carlo Simulation Code for Evaluating Cognitive Biases in Penalty Shootouts Using ABAB and ABBA Formats
منشور في 2024"…<p dir="ltr">This Python code implements a Monte Carlo simulation to evaluate the impact of cognitive biases on penalty shootouts under two formats: ABAB (alternating shots) and ABBA (similar to tennis tiebreak format). …"
-
48
Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving"
منشور في 2025"…</p><p dir="ltr">The code includes:</p><ul><li><a target="_blank"><code>evaluate_mtl.py</code></a>: The main script for evaluating the performance of the proposed deep learning models (JointGAD) and traditional codecs (HEVC, JPEG2000) on the Woodscape and Fisheye8k datasets. …"
-
49
Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis
منشور في 2025"…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…"
-
50
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
منشور في 2025"…The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…"
-
51
Data and software for "Social networks affect redistribution decisions and polarization"
منشور في 2025"…</p><p dir="ltr">The repository contains data in .csv and .xlsx format, model code in .nlogox Netlogo format, analysis code in .ipynb Jupyter notebooks, and helping code in .py Python files.…"
-
52
Missing Value Imputation in Relational Data Using Variational Inference
منشور في 2025"…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …"
-
53
-
54
-
55
-
56
Data files accompanying our PLoS One publication
منشور في 2025"…The videos were digitized and the positional data were saved in .xlsx or .csv format, respectively. The python codes contain the numerical implementations of our mathematical models.…"
-
57
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
منشور في 2025"…</p><p dir="ltr">The Python programming source code used to run the calculation of ET0 and AI is provided and available online on Figshare at:</p><p dir="ltr">https://figshare.com/articles/software/Global_Aridity_Index_and_Potential_Evapotranspiration_Climate_Database_v3_-_Algorithm_Code_Python_/20005589</p><p dir="ltr">Peer-Review Reference and Proper Citation:</p><p dir="ltr">Zomer, R.J.; Xu, J.; Trabuco, A. 2022. …"
-
58
Probabilistic-QSR-GeoQA
منشور في 2024"…<p dir="ltr">The code and data are related to the paper Mohammad Kazemi Beydokhti, Matt Duckham, Amy L. …"
-
59
Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan)
منشور في 2025"…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …"
-
60
Overview of generalized weighted averages.
منشور في 2025"…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…"