Search alternatives:
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
representing » represent (Expand Search), represents (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
representing » represent (Expand Search), represents (Expand Search)
-
161
Performance Benchmark: SBMLNetwork vs. SBMLDiagrams Auto-layout.
Published 2025“…<p>Log–log plot of median wall-clock time for SBMLNetwork’s C++-based auto-layout engine (blue circles, solid fit) and SBMLDiagrams’ implementation of the pure-Python NetworkX spring_layout algorithm (red squares, dashed fit), applied to synthetic SBML models containing 20–2,000 species, with a fixed 4:1 species-to-reaction ratio. …”
-
162
Code for High-quality Human Activity Intensity Maps in China from 2000-2020
Published 2025“…<p dir="ltr">Code and remote sensing images and interpretation results of the samples for uncertainty analysis for "High-quality Human Activity Intensity Maps in China from 2000-2020"</p><p dir="ltr">“Mapping_HAI.py”:We generated the HAI maps using ArcGIS 10.8, and the geoprocessing tasks were implemented using Python 2.7 with the ArcPy library (ArcGIS 10.8 + Python 2.7 environment). …”
-
163
MATH_code : False Data Injection Attack Detection in Smart Grids based on Reservoir Computing
Published 2025“…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…”
-
164
Monte Carlo Simulation Code for Evaluating Cognitive Biases in Penalty Shootouts Using ABAB and ABBA Formats
Published 2024“…<p dir="ltr">This Python code implements a Monte Carlo simulation to evaluate the impact of cognitive biases on penalty shootouts under two formats: ABAB (alternating shots) and ABBA (similar to tennis tiebreak format). …”
-
165
Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving"
Published 2025“…</p><p dir="ltr">The code includes:</p><ul><li><a target="_blank"><code>evaluate_mtl.py</code></a>: The main script for evaluating the performance of the proposed deep learning models (JointGAD) and traditional codecs (HEVC, JPEG2000) on the Woodscape and Fisheye8k datasets. …”
-
166
Mesh Division Schematic Diagram.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
167
Distribution of Splitting Test Loaders.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
168
Ultimate Failure Load.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
169
Distribution of loaders in the compressive test.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
170
Material Parameters.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
171
Flowchart of Random Aggregate Placement Process.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
172
Splitting Specimen Aggregate Placement Area.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
173
Specimen for the splitting test.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
174
Example Diagram.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
175
Aggregate Measurement Image in IPP.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
176
Internal changes of the specimen of 0.82 to 0.84.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
177
Internal changes of the specimen of 0.86 to 0.88.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
178
Internal changes of the specimen of 0.7 to 0.75.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
179
Internal changes of the specimen of 0.87 to 0.9.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”
-
180
Internal changes of the specimen of 0.74 to 0.76.
Published 2025“…The ABAQUS finite – element software was used, and a random aggregate placement algorithm for RCA was implemented by writing the built – in scripting language Python to generate digital specimens. …”