Search alternatives:
modular implementation » model implementation (Expand Search), world implementation (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
modular implementation » model implementation (Expand Search), world implementation (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
181
Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model
Published 2025“…<p dir="ltr">The <i>zip</i> file contains the code for the functional excitation-inhibition ratio (fE/I) and theta-gamma (θ-γ) phase-amplitude coupling (PAC) analyses described in the paper titled "<b>Hippocampal and cortical activity reflect early </b><b>hyperexcitability</b><b> in an Alzheimer's mouse model</b>" submitted to <i>Brain Communications</i> in April 2025.…”
-
182
Iterative Methods for Vecchia-Laplace Approximations for Latent Gaussian Process Models
Published 2024“…In particular, we obtain a speed-up of an order of magnitude compared to Cholesky-based calculations and a 3-fold increase in prediction accuracy in terms of the continuous ranked probability score compared to a state-of-the-art method on a large satellite dataset. All methods are implemented in a free C++ software library with high-level Python and R packages. …”
-
183
Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil)
Published 2025“…The code implements a statistical–computational workflow for parameter selection (VIF, Bartlett and KMO tests, PCA and FA with <i>varimax</i>) and then trains and evaluates machine-learning models to predict three key physico-chemical indicators: turbidity, true color, and total iron. …”
-
184
Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems
Published 2025“…The work advances national AI autonomy, real-time cognitive context modeling, and ethical human-AI integration.</p><p dir="ltr"><b>Availability</b> — The repository includes LaTeX sources, trained model checkpoints, Python/PyTorch code, and synthetic datasets. …”
-
185
face recognation with Flask
Published 2025“…</li><li><b>Face Recognition Engine:</b> Compares detected faces to known faces using deep learning models (e.g., <code>face_recognition</code>, based on dlib’s ResNet).…”
-
186
DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF
Published 2024“…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …”
-
187
DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF
Published 2024“…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …”
-
188
Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis
Published 2025“…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…”
-
189
-
190
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
Published 2025“…The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
-
191
Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
192
Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
193
Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning
Published 2025“…Establishing a framework for implementing and testing ML-based parameterizations in atmospheric models. …”
-
194
Data and software for "Social networks affect redistribution decisions and polarization"
Published 2025“…</p><p dir="ltr">The repository contains data in .csv and .xlsx format, model code in .nlogox Netlogo format, analysis code in .ipynb Jupyter notebooks, and helping code in .py Python files.…”
-
195
Missing Value Imputation in Relational Data Using Variational Inference
Published 2025“…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
-
196
Supporting data for "Software library to quantify the value of forecasts for decision-making: Case study on sensitivity to damages" by Laugesen et al. (2025)
Published 2025“…<br></p><p dir="ltr">Journal paper introduces RUVPY, a Python software library which implements the Relative Utility Value (RUV) method. …”
-
197
Parallel Sampling of Decomposable Graphs Using Markov Chains on Junction Trees
Published 2024“…We find that our parallel sampler yields improved mixing properties in comparison to the single-move variate, and outperforms current state-of-the-art methods in terms of accuracy and computational efficiency. The implementation of our work is available in the Python package parallelDG. …”
-
198
Recursive generation of substructures using point data
Published 2025“…<p dir="ltr">The dataset contains generated substructure using POI in China, the pseudo code for the algorithm and python implement of the algorithm. …”
-
199
Spotted owl habitat quality maps and disturbance attribution analysis
Published 2025“…<p dir="ltr">This dataset includes annual spatial maps of spotted owl nesting habitat quality in Southern California and an accompanying ArcPython script used to attribute negative annual habitat change to wildfire (Barry et al., 2025). …”
-
200
<b>Altered cognitive processes shape tactile perception in autism.</b> (data)
Published 2025“…The perceptual decision-making setup was controlled by Bpod (Sanworks) through scripts in Python (PyBpod, https://pybpod.readthedocs.io/en/latest/). …”