Search alternatives:
tool implementing » model implementing (Expand Search), trial implementing (Expand Search), from implementing (Expand Search)
python model » action model (Expand Search), motion model (Expand Search)
tool implementing » model implementing (Expand Search), trial implementing (Expand Search), from implementing (Expand Search)
python model » action model (Expand Search), motion model (Expand Search)
-
261
Concurrent spin squeezing and field tracking with machine learning
Published 2025“…<p dir="ltr">The dataset contains:</p><ol><li>Steady_squeezing.zip <b>a)</b> data for steady squeezing data and characteraztion <b>b)</b> data for pulse RF magnetormeter</li><li>Tracking1.zip <b>a)</b> data of OU process for Deep learning <b>b)</b> data of OU-jump process for Deep learning</li><li>Tracking2.zip <b>a)</b> data of white noise process in backaction experiment <b>b) </b>data of white noise process in rearrange experiment</li><li>Code <b>a)</b> Randomly signal generating code <b>b)</b> Deep learning codec.data pre-processing code</li></ol><p dir="ltr">The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
-
262
Comprehensive Fluid and Gravitational Dynamics Script for General Symbolic Navier-Stokes Calculations and Validation
Published 2024“…It provides a flexible foundation on which theoretical assumptions can be validated, and practical calculations performed. Implemented in Python with symbolic calculations, the script facilitates in-depth analysis of complex flow patterns and makes advanced mathematical computations more accessible. …”
-
263
kececilayout
Published 2025“…<p dir="ltr"><b>Kececi Layout (Keçeci Yerleşimi)</b>: A deterministic graph layout algorithm designed for visualizing linear or sequential structures with a characteristic "zig-zag" or "serpentine" pattern.</p><p dir="ltr"><i>Python implementation of the Keçeci layout algorithm for graph visualization.…”
-
264
Globus Compute: Federated FaaS for Integrated Research Solutions
Published 2025“…</p><p dir="ltr">Globus Compute [2] is a Function-as-a-Service platform designed to provide a scalable, secure, and simple interface to HPC resources. Globus Compute implements a federated model via which users may deploy endpoints on arbitrary remote computers, from the edge to high performance computing (HPC) cluster, and they may then invoke Python functions on those endpoints via a reliable cloud-hosted service. …”
-
265
Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files)
Published 2025“…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…”
-
266
Research Database
Published 2025“…</p><p dir="ltr">Statistical analysis was conducted through <b>multiple regression models</b> implemented in <b>Jamovi</b>, supported by Geographic Information System (GIS) tools to visualize spatial patterns. …”
-
267
Concurrent spin squeezing and field tracking with machine learning
Published 2025“…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
-
268
<b>Data Availability</b>
Published 2025“…</p><p dir="ltr">Reproducibility Resources:</p><p dir="ltr">Python scripts for reproducing figures, preprocessing data, and training machine learning models (SVM, MLP, XGB, BRR, KRR).…”
-
269
<b>Data Availability</b>
Published 2025“…</p><p dir="ltr">Reproducibility Resources:</p><p dir="ltr">Python scripts for reproducing figures, preprocessing data, and training machine learning models (SVM, MLP, XGB, BRR, KRR).…”
-
270
MSc Personalised Medicine at Ulster University
Published 2025“…</b> Introducing computational approaches to studying genes, proteins or metabolites, this module teaches Python coding, data analysis and how to work with the databases that support data analysis.…”
-
271
OHID-FF dataset for forest fire detection and classification
Published 2025“…Prepare the YOLODataset structure (if you need to rebuild it):</p><p dir="ltr">```bash</p><p dir="ltr">python "train val scripts/prepare_data.py"</p><p>```</p><p dir="ltr"><br></p><p dir="ltr">3. …”
-
272
Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection
Published 2025“…<p dir="ltr">Python image preprocessing and model implementation for research of "Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection".…”
-
273
Supplementary Material
Published 2025“…The supplementary material includes the full Python-based implementation of the AI-driven optimization framework described in the manuscript. …”
-
274
NanoDB: Research Activity Data Management System
Published 2024“…Cross-Platform Compatibility: Works on Windows, macOS, and Linux. In a Python environment or as an executable. Ease of Implementation: Using the flexibility of the Python framework all the data setup and algorithm can me modified and new functions can be easily added. …”
-
275
Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series
Published 2025“…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
-
276
A Fully Configurable Open-Source Software-Defined Digital Quantized Spiking Neural Core Architecture
Published 2025“…QUANTISENC’s software-defined hardware design methodology allows the user to train an SNN model using Python and evaluate performance of its hardware implementation, such as area, power, latency, and throughput. …”
-
277
Core data
Published 2025“…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
-
278
Copy number contingency table.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
279
Gene mutation contingency table.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
-
280
Resistant & sensitive cell line Info on AZD5991.
Published 2025“…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”