Showing 161 - 180 results of 190 for search '(( ((python model) OR (python code)) representing ) OR ( python considered implementing ))', query time: 0.27s Refine Results
  1. 161

    End-to-end example-based sim-to-real RL policy transfer based on neural stylisation with application to robotic cutting by Jamie Hathaway (10285367)

    Published 2025
    “…</p><h3>policy/</h3><p dir="ltr">This folder contains pickled trajectories, in the form of a Python list.</p><p dir="ltr">The list's elements are TrajWithRew dataclass objects from the Imitation Python library (https://imitation.readthedocs.io/en/latest/)</p><p dir="ltr">TrajWithRew contains 4 main fields</p><ul><li> obs - the (unnormalised) observations, in the form of a [WINDOW_LENGTH * NUM_CHANNELS] array</li><li> acts - the actions in the form of a [WINDOW_LENGTH - 1 * NUM_ACTS] array</li><li> infos - the info values at each timestep, as a [WINDOW_LENGTH - 1] array of dicts</li><li> terminals - boolean indicating if that trajectory segment is a terminal segment</li><li> rews - the rewards as a [WINDOW_LENGTH - 1] array</li></ul><p dir="ltr">Each TrajWithRew represents not a full episodic trajectory, as is usually the case with Imitiation - rather they represent segments of a full episodic trajectory, of length WINDOW_LENGTH. …”
  2. 162

    Hierarchical Deep Learning Framework for Automated Marine Vegetation and Fauna Analysis Using ROV Video Data by Bjørn Christian Weinbach (16918707)

    Published 2024
    “…</p><ol><li><b>MaskRCNN-Segmented Objects</b>:</li></ol><p dir="ltr"> - `.jpg` files representing segmented objects detected by the MaskRCNN model.…”
  3. 163

    Supplementary Material for: The prediction of hematoma growth in acute intracerebral hemorrhage: from 2-dimensional shape to 3-dimensional morphology by figshare admin karger (2628495)

    Published 2025
    “…We subsequently constructed the 3-dimensional morphology models, including the probability of hematoma morphology (PHM) and the probability of comprehensive model (PCM), to predict HG. …”
  4. 164

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…Analysis of the confusion matrix revealed a critical limitation: although the model correctly identified 785 poisonous mushrooms, it misclassified 313 as edible (false negatives), which represents an unacceptable risk in a practical application.…”
  5. 165

    Data Sheet 1_Nationwide epidemiological study of subarachnoid hemorrhage: trends in admissions, mortality, seasonality, costs, clipping, embolization, and the impact of COVID-19.pd... by Thiago Oscar Goulart (22485604)

    Published 2025
    “…</p>Methods<p>This retrospective study analyzed secondary data from the Brazilian public health system (DataSUS) using ICD-10 code I60 for aSAH. Key metrics included the evaluation of admissions with time-series in Python, and mortality rates, procedures, and costs.…”
  6. 166

    Electrical Tactile Dataset (Piezoelectric and Accelerometer) for textures by Dexter Shepherd (13238508)

    Published 2025
    “…</p><p dir="ltr">X shape: (Number, frame, sensor index)</p><p dir="ltr">y shape: (Number,)</p><p dir="ltr">All files are in compressed numpy format. Python users can load in the dataset using the code provided in the ReadMe.…”
  7. 167

    Machine Learning-Driven Discovery and Database of Cyanobacteria Bioactive Compounds: A Resource for Therapeutics and Bioremediation by Renato Soares (20348202)

    Published 2024
    “…The biochemical descriptors were then used to determine the most promising protein targets for human therapeutic approaches and environmental bioremediation using the best machine learning (ML) model. The creation of our database, coupled with the integration of computational docking protocols, represents an innovative approach to understanding the potential of cyanobacteria bioactive compounds. …”
  8. 168

    Phylogenomics of aquatic bacteria by Krzysztof Jurdzinski (12519700)

    Published 2025
    “…</p> <p><br></p> <p>all_MSG_ids.txt - a text file with names of all the representative MAGs within all the MSG pairs.</p> <p><br></p> <p>filter_MSGs.py - a Python script to extract the MAGs from within the MSGs (given all_MSG_ids.txt) from a folder containing a larger set of sequences.…”
  9. 169

    Optical Tactile (TacTip) Dataset for texture classification by Dexter Shepherd (13238508)

    Published 2025
    “…</p><p dir="ltr">X shape: (Number, frame, h, w)</p><p dir="ltr">y shape: (Number,)</p><p dir="ltr"><br></p><p dir="ltr">All files are in compressed numpy format. Python users can load in the dataset using the code provided in the ReadMe.…”
  10. 170

    Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series by Andrew M. Thomas (712104)

    Published 2025
    “…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
  11. 171

    <b>Challenges and Strategies for the Management of Quality-Oriented Education Bases in Universities under Informatization Background</b> by Yang Yanxi (21571568)

    Published 2025
    “…Final codes, together with basic demographic attributes supplied by the institutions’ HR offices, were exported to Excel and cleaned in Python 3.10 using pandas 2.2.1 and numpy 1.26. …”
  12. 172

    Contrast enhancement of digital images using dragonfly algorithm by Soumyajit Saha (19726163)

    Published 2024
    “…Comparisons with state-of-art methods ensure the superiority of the proposed algorithm. The Python implementation of the proposed approach is available in this <a href="https://github.com/somnath796/DA_contrast_enhancement" target="_blank">Github repository</a>.…”
  13. 173

    Cathode carbon block material parameters [14]. by Chenglong Gong (20629836)

    Published 2025
    “…A random aggregate model was implemented in Python and imported into finite element software to simulate sodium diffusion using Fick’s second law. …”
  14. 174

    Sodium concentration distribution cloud map. by Chenglong Gong (20629836)

    Published 2025
    “…A random aggregate model was implemented in Python and imported into finite element software to simulate sodium diffusion using Fick’s second law. …”
  15. 175

    Sodium binding coefficient R. by Chenglong Gong (20629836)

    Published 2025
    “…A random aggregate model was implemented in Python and imported into finite element software to simulate sodium diffusion using Fick’s second law. …”
  16. 176

    <b>Engineered Muscle-Derived Extracellular Vesicles Boost Insulin Sensitivity and Glucose Regulation</b> by Hagit Shoyhet (21090650)

    Published 2025
    “…</p><p dir="ltr"><b>miR_path_target_enrichment.csv</b></p><p dir="ltr"><b>Description:</b> KEGG pathway enrichment analysis results of shared mRNA targets of miRNAs miR-16-5p, miR-122-5p and miR-486-5p ranked by their interaction score defined in our paper. this includes the pathway name, the enrichment p-value, number of genes found in the term and number of miRNAs targeting these genes</p><p dir="ltr"><b>Code/software</b></p><p dir="ltr">Data were analyzed using R-V4.0.4, Python-V3.9.2 and GraphPad software. miRNA analyses were run in R-V4.0.4 Differential expression analysis was conducted using the “DEseq2” package and corrected for multiple hypotheses by FDR. …”
  17. 177

    Daily histograms of wind speed (100m), wind direction (100m) and atmospheric stability derived from ERA5 by Marc Imberger (6226619)

    Published 2025
    “…The following bins (left edges) have been used to create the histograms:</p><p dir="ltr">Wind speed: [0, 40) m/s (bin width 1 m/s)<br>Wind direction: [0,360) deg (bin width 15 deg)<br>Stability: 5 discrete stability classes (1: very unstable, 2: unstable, 3: neutral, 4: stable, 5: very stable)</p><p><br></p><p dir="ltr"><b>Main Purpose:</b> The dataset serves as minimum input data for the CLIMatological REPresentative PERiods (climrepper) python package (https://gitlab.windenergy.dtu.dk/climrepper/climrepper) in preparation for public release).…”
  18. 178

    Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event by Thomas Clemens Carmine (19756929)

    Published 2025
    “…<br><br><b>Missing-Data Handling & Imputation:</b></p><p dir="ltr">The following sequential steps were applied to create a complete and consistent daily time series suitable for analysis (presented in the Imputed_AP_Data_Zurich_2010-25 sheet), particularly addressing the absence of routine PM₂.₅ measurements prior to January 2016. The full implementation is detailed in the accompanying Python script (Imputation_Air_Pollutants_NABEL.py). …”
  19. 179

    Modules organization over different course editions. by Gabriele Pozzati (21094166)

    Published 2025
    “…<p>Course editions starting from 2019 are represented side-by-side, while different working days and weeks of the same course edition are displayed vertically. …”
  20. 180

    Table 1_Analysis of distribution equilibrium and influencing factors for older adult meal service facilities in mainland China.xlsx by Feng Wang (44414)

    Published 2025
    “…Objective<p>Analyze the distribution equilibrium of older adult meal service facilities in mainland China and explore the factors influencing their distribution.</p>Methods<p>Use Python to obtain data on older adult meal service facilities, and analyze the equity of older adult meal services using descriptive statistics, the Lorenz curve, the Gini coefficient, and the Spatial Mismatch Index (SMI). …”