Search alternatives:
modular implementation » model implementation (Expand Search), world implementation (Expand Search)
python model » python code (Expand Search), action model (Expand Search), motion model (Expand Search)
modular implementation » model implementation (Expand Search), world implementation (Expand Search)
python model » python code (Expand Search), action model (Expand Search), motion model (Expand Search)
-
181
-
182
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
Published 2025“…</p><p dir="ltr">GPU:NVIDIA GeForce RTX 3090 GPU</p><p dir="ltr">Bert-base-cased pre-trained model: https://huggingface.co/google-bert/bert-base-cased</p><p dir="ltr">python=3.7,pytorch=1.9.0,cudatoolkit=11.3.1,cudnn=8.9.7.29.…”
-
183
Code and data for reproducing the results in the original paper of DML-Geo
Published 2025“…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…”
-
184
Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan)
Published 2025“…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
-
185
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
-
186
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
-
187
Error reduction over time by the HOFA-SMC.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
-
188
Comparison of SMC techniques.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
-
189
Proposed HOFA-SMC with experimental validation.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
-
190
ReaxANA: Analysis of Reactive Dynamics Trajectories for Reaction Network Generation
Published 2025“…To address this challenge, we introduce a graph algorithm-based explicit denoising approach that defines user-controlled operations for removing oscillatory reaction patterns, including combination and separation, isomerization, and node contraction. This algorithm is implemented in ReaxANA, a parallel Python package designed to extract reaction mechanisms from both heterogeneous and homogeneous reactive MD trajectories. …”
-
191
ReaxANA: Analysis of Reactive Dynamics Trajectories for Reaction Network Generation
Published 2025“…To address this challenge, we introduce a graph algorithm-based explicit denoising approach that defines user-controlled operations for removing oscillatory reaction patterns, including combination and separation, isomerization, and node contraction. This algorithm is implemented in ReaxANA, a parallel Python package designed to extract reaction mechanisms from both heterogeneous and homogeneous reactive MD trajectories. …”
-
192
Overview of generalized weighted averages.
Published 2025“…<div><p>The multi-armed bandit (MAB) problem is a classical problem that models sequential decision-making under uncertainty in reinforcement learning. …”
-
193
Soulware-Lite
Published 2025“…</p><p><br></p><p dir="ltr">The system is fully modular, built on Python + FastAPI, and integrated with Streamlit UI for visualizing alignment confidence and drift flags. …”
-
194
Reinforcement Learning based traffic steering inOpen Radio Access Network (ORAN)- oran-ts GitHub Repository
Published 2025“…<p dir="ltr">This repository contains the simulation codebase for research on <b>Reinforcement Learning (RL) based Traffic Steering and Resource Allocation in Open Radio Access Networks (O-RAN)</b>. It features a modular Python framework implementing various RL agents (Q-Learning, SARSA, N-Step SARSA, DQN) and a traditional baseline evaluated in a realistic cellular network environment. …”
-
195
Supervised Classification of Burned Areas Using Spectral Reflectance and Machine Learning
Published 2025“…Six Python scripts are provided, each implementing a distinct machine learning algorithm—Random Forest, k-Nearest Neighbors (k-NN), Multi-Layer Perceptron (MLP), Decision Tree, Naïve Bayes, and Logistic Regression. …”
-
196
Folder with all data and algorithms
Published 2025“…In this study, we present an open-source, Python-based computational framework that unifies photon transport modeling, probe geometry optimization, and photothermal safety assessment into a single workflow. …”
-
197
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
-
198
Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
-
199
Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
-
200
Data Sheet 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”