Search alternatives:
pre implementation » time implementation (Expand Search), _ implementation (Expand Search), new implementation (Expand Search)
python model » python code (Expand Search), action model (Expand Search), motion model (Expand Search)
pre implementation » time implementation (Expand Search), _ implementation (Expand Search), new implementation (Expand Search)
python model » python code (Expand Search), action model (Expand Search), motion model (Expand Search)
-
181
-
182
Probabilistic-QSR-GeoQA
Published 2024“…Also we have written Python API for Probcog (ProbCog-API.py) and SparQ reasoners (SparQ-API.py).…”
-
183
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
Published 2025“…The database also includes three averaged multi-model ensembles produced for each of the four emission scenarios:</p><p>**************************************************************************************************************************</p><p dir="ltr">The Global Aridity Index (Global-AI) and Global Reference Evapo-Transpiration (Global-ET0) datasets provided in Version 3.1 of the Global Aridity Index and Potential Evapo-Transpiration (ET0) Database (Global-AI_PET_v3.x1) provide high-resolution (30 arc-seconds) global raster data for the 1970-2000 period, related to evapotranspiration processes and rainfall deficit for potential vegetative growth, based upon implementation of the FAO-56 Penman-Monteith Reference Evapotranspiration (ET<sub>0</sub>) equation.…”
-
184
Data files accompanying our PLoS One publication
Published 2025“…The videos were digitized and the positional data were saved in .xlsx or .csv format, respectively. The python codes contain the numerical implementations of our mathematical models.…”
-
185
-
186
Code and data for reproducing the results in the original paper of DML-Geo
Published 2025“…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…”
-
187
Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan)
Published 2025“…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
-
188
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
-
189
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…</p><p dir="ltr"><i>cd 1point2dem/CIPrediction</i></p><p dir="ltr"><i>python -u point_prediction.py --model [GCN|ChebNet|GATNet]</i></p><h3>step 4: Parallel computation</h3><p dir="ltr">This step uses the trained models to optimize parallel computation. …”
-
190
Leue Modulation Coefficients (LMC): A Smooth Continuum Embedding of Bounded Arithmetic Data
Published 2025“…This Zenodo package includes: the full research paper (PDF), a complete Python implementation generating the LMC field and conductivity model, a numerical plot comparing discrete LMC values with the smoothed continuum field, a cover letter and supporting documentation. …”
-
191
Error reduction over time by the HOFA-SMC.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
-
192
Comparison of SMC techniques.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
-
193
Proposed HOFA-SMC with experimental validation.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. …”
-
194
ReaxANA: Analysis of Reactive Dynamics Trajectories for Reaction Network Generation
Published 2025“…To address this challenge, we introduce a graph algorithm-based explicit denoising approach that defines user-controlled operations for removing oscillatory reaction patterns, including combination and separation, isomerization, and node contraction. This algorithm is implemented in ReaxANA, a parallel Python package designed to extract reaction mechanisms from both heterogeneous and homogeneous reactive MD trajectories. …”
-
195
ReaxANA: Analysis of Reactive Dynamics Trajectories for Reaction Network Generation
Published 2025“…To address this challenge, we introduce a graph algorithm-based explicit denoising approach that defines user-controlled operations for removing oscillatory reaction patterns, including combination and separation, isomerization, and node contraction. This algorithm is implemented in ReaxANA, a parallel Python package designed to extract reaction mechanisms from both heterogeneous and homogeneous reactive MD trajectories. …”
-
196
Overview of generalized weighted averages.
Published 2025“…<div><p>The multi-armed bandit (MAB) problem is a classical problem that models sequential decision-making under uncertainty in reinforcement learning. …”
-
197
Artifact for the IJCAI 2024 paper "Solving Long-run Average Reward Robust MDPs via Stochastic Games"
Published 2024“…</p><h2>Dependencies</h2><p dir="ltr">In order to run the code the following dependencies must be met:</p><pre><pre>- Python 3 should be installed. We used Python 3.9 to obtain the results in the paper. …”
-
198
<b>Data Availability</b>
Published 2025“…</p><p dir="ltr">Model Outputs & Validation:</p><p dir="ltr">Pre-trained MDN model weights and architecture files.…”
-
199
<b>Data Availability</b>
Published 2025“…</p><p dir="ltr">Model Outputs & Validation:</p><p dir="ltr">Pre-trained MDN model weights and architecture files.…”
-
200
Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series
Published 2025“…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”