Search alternatives:
effective implementation » effective prevention (Expand Search)
python effective » proven effective (Expand Search), 1_the effective (Expand Search), 2_the effective (Expand Search)
python model » python code (Expand Search), action model (Expand Search), motion model (Expand Search)
effective implementation » effective prevention (Expand Search)
python effective » proven effective (Expand Search), 1_the effective (Expand Search), 2_the effective (Expand Search)
python model » python code (Expand Search), action model (Expand Search), motion model (Expand Search)
-
1
-
2
Exploring the integration of metaverse technologies in engineering education through the SAMR model
Published 2025“…It demonstrates the successful implementation of the model in practice and provides examples of effective practices in the context of the CAVE (Cave Automatic Virtual Environment) metaverse. …”
-
3
Cost functions implemented in Neuroptimus.
Published 2024“…In recent years, manual model tuning has been gradually replaced by automated parameter search using a variety of different tools and methods. …”
-
4
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
-
5
Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
-
6
Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
-
7
Data Sheet 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
-
8
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
Published 2025“…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …”
-
9
Research Database
Published 2025“…</p><p dir="ltr">Statistical analysis was conducted through <b>multiple regression models</b> implemented in <b>Jamovi</b>, supported by Geographic Information System (GIS) tools to visualize spatial patterns. …”
-
10
Code
Published 2025“…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”
-
11
Core data
Published 2025“…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …”