يعرض 21 - 40 نتائج من 650 نتيجة بحث عن '(( ((python models) OR (python code)) represent ) OR ( python files implementation ))', وقت الاستعلام: 0.20s تنقيح النتائج
  1. 21
  2. 22
  3. 23

    PTPC-UHT bounce حسب David Parry (22169299)

    منشور في 2025
    "…<br>It contains the full Python implementation of the PTPC bounce model (<code>PTPC_UHT_bounce.py</code>) and representative outputs used to generate the figures in the paper. …"
  4. 24
  5. 25
  6. 26

    DataSheet_1_AirSeaFluxCode: Open-source software for calculating turbulent air-sea fluxes from meteorological parameters.pdf حسب Stavroula Biri (14571707)

    منشور في 2023
    "…In this paper, we present a Python 3.6 (or higher) open-source software package “AirSeaFluxCode” for the computation of the heat (latent and sensible) and momentum fluxes. …"
  7. 27
  8. 28
  9. 29

    SciPy2024: Facilitating scientific investigations from long-tail data with Python حسب Deborah Khider (4673140)

    منشور في 2024
    "…</p><p><br></p><p dir="ltr">Although the Pandas extension and its incorporation into Pyleoclim represents a major stepping stone to allow scientists in these domains to make use of more open science code, work remains for interoperability with other open source libraries such as Matplotlib, Seaborn, Scikit-learn, and Scipy. …"
  10. 30
  11. 31
  12. 32
  13. 33
  14. 34

    Python implementation of the Trajectory Adaptive Multilevel Sampling algorithm for rare events and improvements حسب Pascal Wang (10130612)

    منشور في 2021
    "…</div><div><br></div><div>The `TAMS` folder contains the necessary files to run the TAMS algorithm. The `main.py` file is the file to be executed using a command of the type `python main.py`. …"
  15. 35

    Code interpreter with LLM. حسب Jin Lu (428513)

    منشور في 2025
    "…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …"
  16. 36
  17. 37

    Overview of MCell4 API generator. حسب Adam Husar (18437351)

    منشور في 2024
    الموضوعات:
  18. 38
  19. 39
  20. 40