-
141
Demonstration of Isosteric Heat of Adsorption Calculation using AIFs and pyGAPs
Published 2025“…</p><p dir="ltr">The calculation is performed using the Clausius-Clapeyron method as implemented in the <code><strong>pyGAPS</strong></code> Python library for adsorption science. …”
-
142
<b>Testing AI Applications Under Nondeterminism, Drift, and Resource Constraints</b>
Published 2025“…<ul><li>A <b>Python repo</b> with minimal implementations of all five layers<br>(<b>COL</b>, <b>SCL</b>, <b>CDM</b>, <b>RPE</b>, <b>RAS</b>) plus an <b>orchestrator</b> and utilities.…”
-
143
Table & Figure.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks
Published 2025“…Supplementary Materials</p> <p><br></p> <p>Experimental protocols and study design details</p> <p><br></p> <p>Questionnaires, surveys, or rubrics used in the study</p> <p><br></p> <p>Educational materials related to HOTS-based mathematics tasks</p> <p><br></p> <p><br></p> <p><br></p> <p>3. Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …”
-
144
Raw Data EEG.pdfBrainwaves and Higher-Order Thinking: An EEG Study of Cognitive Engagement in Mathematics Tasks
Published 2025“…Supplementary Materials</p> <p><br></p> <p>Experimental protocols and study design details</p> <p><br></p> <p>Questionnaires, surveys, or rubrics used in the study</p> <p><br></p> <p>Educational materials related to HOTS-based mathematics tasks</p> <p><br></p> <p><br></p> <p><br></p> <p>3. Code and Algorithms (if applicable)</p> <p><br></p> <p>Scripts for EEG signal processing and analysis</p> <p><br></p> <p>Machine learning or statistical modeling scripts</p> <p><br></p> <p>Any software implementation used to analyze brainwave patterns</p> <p><br></p> <p><br></p> <p><br></p> <p>4. …”
-
145
Online Resource: Reservoir Computing as a Promising Approach for False Data Injection Attack Detection in Smart Grids
Published 2025“…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…”
-
146
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
Published 2025“…</p><p dir="ltr">The Python programming source code used to run the calculation of ET0 and AI is provided and available online on Figshare at:</p><p dir="ltr">https://figshare.com/articles/software/Global_Aridity_Index_and_Potential_Evapotranspiration_Climate_Database_v3_-_Algorithm_Code_Python_/20005589</p><p dir="ltr">Peer-Review Reference and Proper Citation:</p><p dir="ltr">Zomer, R.J.; Xu, J.; Trabuco, A. 2022. …”
-
147
Folder with all data and algorithms
Published 2025“…<p dir="ltr">Spatially Offset Raman Spectroscopy (SORS) has emerged as a potential tool for non-invasive biomedical diagnostics, enabling molecularly specific probing of subsurface tissues. …”
-
148
Digital Twin for Chemical Sciences
Published 2025“…Lastly, we use the Figure 4.ipynb notebook in the 3_outputs folder to plot the subfigures in d), e), f). Observing that Basin Hopping performs better than Gaussian Process, we plot the degeneracy result with 0.1 error cutoff to obtain the subfigures in g), h), i). …”
-
149
Minami_etal_2025
Published 2025“…<h2>Code files related to Minami et al (2025)</h2><p dir="ltr">accession_plot.py:Python script used to generate Fig4a.</p><p dir="ltr">Bd21-3_Bd21.Rmd:R script (mrkdown) used to run rQTL and generte Supplementary Fig. 3c (Bd21-3 x Bd21)</p><p dir="ltr">.…”
-
150
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
Published 2025“…Its efficiency and scalability make it well-suited for early-stage antibody discovery, repertoire profiling, and therapeutic design, particularly in the absence of structural data. The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
-
151
Concurrent spin squeezing and field tracking with machine learning
Published 2025“…<p dir="ltr">The dataset contains:</p><ol><li>Steady_squeezing.zip <b>a)</b> data for steady squeezing data and characteraztion <b>b)</b> data for pulse RF magnetormeter</li><li>Tracking1.zip <b>a)</b> data of OU process for Deep learning <b>b)</b> data of OU-jump process for Deep learning</li><li>Tracking2.zip <b>a)</b> data of white noise process in backaction experiment <b>b) </b>data of white noise process in rearrange experiment</li><li>Code <b>a)</b> Randomly signal generating code <b>b)</b> Deep learning codec.data pre-processing code</li></ol><p dir="ltr">The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
-
152
Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan)
Published 2025“…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
-
153
Oka et al., Supplementary Data for "Development of a battery emulator using deep learning model to predict the charge–discharge voltage profile of lithium-ion batteries"
Published 2024“…For a single file, test data is read, and the prediction plot is output. To use this Python script, you need to modify the "CFG (config)" and "Convenient" sections within the script.…”
-
154
face recognation with Flask
Published 2025“…Built using the <b>Flask</b> web framework (Python), this system provides a lightweight and scalable solution for implementing facial recognition capabilities in real-time or on-demand through a browser interface.…”
-
155
Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files)
Published 2025“…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…”
-
156
IGD-cyberbullying-detection-AI
Published 2024“…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…”
-
157
Overview of generalized weighted averages.
Published 2025“…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
-
158
Automatic data reduction for the typical astronomer
Published 2025“…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …”
-
159
Concurrent spin squeezing and field tracking with machine learning
Published 2025“…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
-
160
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”