Search alternatives:
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python time » python files (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
python time » python files (Expand Search)
-
121
-
122
Workflow of a typical Epydemix run.
Published 2025“…<div><p>We present Epydemix, an open-source Python package for the development and calibration of stochastic compartmental epidemic models. …”
-
123
<b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b>
Published 2025“…</li><li>Python/Kaggle notebooks (<code>.ipynb</code>): reproducibility pipeline for accuracy metrics and statistical analysis.…”
-
124
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
Published 2025“…</p><p dir="ltr">GPU:NVIDIA GeForce RTX 3090 GPU</p><p dir="ltr">Bert-base-cased pre-trained model: https://huggingface.co/google-bert/bert-base-cased</p><p dir="ltr">python=3.7,pytorch=1.9.0,cudatoolkit=11.3.1,cudnn=8.9.7.29.…”
-
125
<b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b>
Published 2025“…<p dir="ltr"><b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b></p><p dir="ltr">The code was developed in the Google Collaboratory environment, using Python version 3.7.13, with TensorFlow 2.8.2. …”
-
126
Neural-Signal Tokenization and Real-Time Contextual Foundation Modelling for Sovereign-Scale AGI Systems
Published 2025“…</p><p dir="ltr"><b>Availability</b> — The repository includes LaTeX sources, trained model checkpoints, Python/PyTorch code, and synthetic datasets. Data are released under a Creative Commons Attribution-NonCommercial-4.0 (CC BY-NC 4.0) license; code under MIT License.…”
-
127
Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection
Published 2025“…<p dir="ltr">Python image preprocessing and model implementation for research of "Deep Learning-Based Visual Enhancement and Real-Time Underground-Mine Water Inflow Detection".…”
-
128
Data Sheet 1_COCαDA - a fast and scalable algorithm for interatomic contact detection in proteins using Cα distance matrices.pdf
Published 2025“…Here, we introduce COCαDA (COntact search pruning by Cα Distance Analysis), a Python-based command-line tool for improving search pruning in large-scale interatomic protein contact analysis using alpha-carbon (Cα) distance matrices. …”
-
129
-
130
A Structured Attempt at a Polynomial-Time Solution to the Subset Sum Problem and Its Implications for P vs NP
Published 2025“…The manuscript includes theoretical formulation, Python implementation, verified output snapshots, and detailed analysis — aimed at opening fresh discourse on the P vs NP question. …”
-
131
HCC Evaluation Dataset and Results
Published 2024“…The only requirement for running this script is a Python 3.6+ interpreter as well as an installation of the <code>numpy</code> package. …”
-
132
Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis
Published 2025“…</p><h2><b>Included Files</b></h2><h3><b>1. </b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.…”
-
133
Performance Benchmark: SBMLNetwork vs. SBMLDiagrams Auto-layout.
Published 2025“…<p>Log–log plot of median wall-clock time for SBMLNetwork’s C++-based auto-layout engine (blue circles, solid fit) and SBMLDiagrams’ implementation of the pure-Python NetworkX spring_layout algorithm (red squares, dashed fit), applied to synthetic SBML models containing 20–2,000 species, with a fixed 4:1 species-to-reaction ratio. …”
-
134
Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2)
Published 2025“…The pipeline integrates established open-source tools (fastp, BWA-MEM, samtools, iVar, bcftools) and implements <b>codon-aware mutation calling</b> at five canonical RBD positions (R346, S371, K444, F456, F486) relative to NC_045512.2. …”
-
135
MCCN Case Study 3 - Select optimal survey locality
Published 2025“…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
-
136
Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series
Published 2025“…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
-
137
Summary of Tourism Dataset.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
138
Segment-wise Spending Analysis.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
139
Hyperparameter Parameter Setting.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
140
Marketing Campaign Analysis.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”