Search alternatives:
tool implementing » model implementing (Expand Search), trial implementing (Expand Search), from implementing (Expand Search)
tool implementing » model implementing (Expand Search), trial implementing (Expand Search), from implementing (Expand Search)
-
101
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
Published 2025“…Attached is the micro-emotion annotation code based on pytorch, which can be used to annotate the Goemotions dataset by yourself, or predict the emotion classification based on the annotation results. …”
-
102
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
103
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
104
BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories
Published 2025“…We describe here the software’s uses, the methods associated with it, and a comprehensive Python interface to the underlying generalist BNM code. …”
-
105
The artifacts and data for the paper "DD4AV: Detecting Atomicity Violations in Interrupt-Driven Programs with Guided Concolic Execution and Filtering" (OOPSLA 2025)
Published 2025“…</p><pre><pre>sudo apt-get install -y wget git build-essential python3 python python-pip python3-pip tmux cmake libtool libtool-bin automake autoconf autotools-dev m4 autopoint libboost-dev help2man gnulib bison flex texinfo zlib1g-dev libexpat1-dev libfreetype6 libfreetype6-dev libbz2-dev liblzo2-dev libtinfo-dev libssl-dev pkg-config libswscale-dev libarchive-dev liblzma-dev liblz4-dev doxygen libncurses5 vim intltool gcc-multilib sudo --fix-missing<br></pre></pre><pre><pre>pip install numpy && pip3 install numpy && pip3 install sysv_ipc<br></pre></pre><h4><b>Download the Code</b></h4><p dir="ltr">Download <b>DD4AV</b> from the Figshare website to your local machine and navigate to the project directory:</p><pre><pre>cd DD4AV<br></pre></pre><h4><b>Configure Environment and Install the Tool</b></h4><p dir="ltr">For convenience, we provide shell scripts to automate the installation process. …”
-
106
Probabilistic-QSR-GeoQA
Published 2024“…</p><p><br></p><p><br></p><p dir="ltr"><b>Perquisites</b></p><p dir="ltr">Two spatial reasoning tools, SparQ for conventional reasoning and Probcog for probabilistic reasoning need to be installed:</p><p><br></p><p dir="ltr">- Probcog ( Follow the their github repo in https://github.com/opcode81/ProbCog)</p><p dir="ltr">- SparQ (Follow their manual in https://www.uni-bamberg.de/fileadmin/sme/SparQ/SparQ-Manual.pdf)</p><p><br></p><p><br></p><p dir="ltr"><b>Materials</b></p><p dir="ltr">This includes codes, data, evidence sets, and mln folders for two experiments:</p><p dir="ltr">- Code: This folder includes questionGenerator.py and answerExtraction.py for generating synthetic questions and post-processing of inferences from Probcog and SparQ reasoners. …”
-
107
Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds
Published 2025“…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …”
-
108
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
Published 2025“…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …”
-
109
Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2)
Published 2025“…The pipeline integrates established open-source tools (fastp, BWA-MEM, samtools, iVar, bcftools) and implements <b>codon-aware mutation calling</b> at five canonical RBD positions (R346, S371, K444, F456, F486) relative to NC_045512.2. …”
-
110
MCCN Case Study 3 - Select optimal survey locality
Published 2025“…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
-
111
Advancing Solar Magnetic Field Modeling
Published 2025“…<br><br>We developed a significantly faster Python code built upon a functional optimization framework previously proposed and implemented by our team. …”
-
112
Folder with all data and algorithms
Published 2025“…<p dir="ltr">Spatially Offset Raman Spectroscopy (SORS) has emerged as a potential tool for non-invasive biomedical diagnostics, enabling molecularly specific probing of subsurface tissues. …”
-
113
Artifact for the IJCAI 2024 paper "Solving Long-run Average Reward Robust MDPs via Stochastic Games"
Published 2024“…<br></pre></pre><h2>Structure and How to run</h2><p dir="ltr">There are four Python files in the repository.</p><pre><pre>(i) `StrategyIteration.py` is the backend code, containing the implementation of the RPPI algorithm described in the paper.…”
-
114
<b>Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population</b>
Published 2025“…<p dir="ltr">Contains</p><p dir="ltr">Final Analysis Output.xlsx: Current and reference concentrations of DRP, TP, NO3-N and TN along with pivot table analysis</p><p dir="ltr">Code: Python code used to implement the model in ArcGIS Pro.…”
-
115
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
-
116
Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
-
117
Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
-
118
Data Sheet 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
-
119
A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification
Published 2025“…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…”
-
120
<b>Algorithm Pseudocode</b>
Published 2025“…The model generates point forecasts and forecast interval boundaries for short-term loads, providing important support for risk quantification and decision-making in power systems. The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …”