Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significance mean » significance set (Expand Search), significance a (Expand Search), significance has (Expand Search)
significance test » significance set (Expand Search), significance testing (Expand Search), significance level (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significance mean » significance set (Expand Search), significance a (Expand Search), significance has (Expand Search)
significance test » significance set (Expand Search), significance testing (Expand Search), significance level (Expand Search)
-
1561
-
1562
ROS reduces the expression of Akt3, WDR12 and Aurora B leading to micronuclei.
Published 2025Subjects: -
1563
-
1564
-
1565
-
1566
-
1567
Estimated marginal means (± SE) of durations of momentary frequency of highest amplitude (MFHA).
Published 2025“…The most marked change can be seen during CVH intervention, with a significant increase in LF and a significant decrease in IM duration.…”
-
1568
-
1569
-
1570
-
1571
-
1572
Means scores of CAM and CAM-MYCS.
Published 2025“…A moderate negative correlation was observed between CAM and CAM-MYCS scores (r = −0.511; p < 0.001), indicating that increased awareness of real causes is associated with decreased belief in myths. Regression analysis revealed that CAM scores were significantly predicted by academic year, being in the normal Body Mass Index (BMI) spectrum, and by having attended an oncology course (R² = 0.142; p < 0.001), whereas CAM-MYCS scores were predicted by academic year and high BMI values (R² = 0.072; p < 0.001). …”
-
1573
-
1574
Internal structure of an LSTM cell.
Published 2025“…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
-
1575
Prediction effect of each model after STL.
Published 2025“…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
-
1576
The kernel density plot for data of each feature.
Published 2025“…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
-
1577
Analysis of raw data prediction results.
Published 2025“…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
-
1578
Flowchart of the STL.
Published 2025“…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
-
1579
SARIMA predicts season components.
Published 2025“…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
-
1580
BWO-BiLSTM model prediction results.
Published 2025“…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”