Showing 161 - 180 results of 21,342 for search '(( ((significant factor) OR (significant effects)) decrease ) OR ( significant decrease decrease ))', query time: 0.58s Refine Results
  1. 161
  2. 162
  3. 163
  4. 164
  5. 165

    Analysis of the Nugent score before (T=0) and after (T=1) the use of the vaginal gel. Number of participants and respective percentages of Nugent scores before and after the intervention. A statistically significant decrease in Nugent scores was observed after the intervention (p value =0.0047). by Adriana Bittencourt Campaner (21175462)

    Published 2025
    “…Number of participants and respective percentages of Nugent scores before and after the intervention. A statistically significant decrease in Nugent scores was observed after the intervention (p value =0.0047).…”
  6. 166
  7. 167
  8. 168

    Decreased childhood asthma hospitalizations linked to hotter, drier climate with lower wind speed in drylands by Klézio Silva Monte (20579829)

    Published 2025
    “…<p>Climate change poses a significant threat to human health. Long-term climate effects on childhood asthma hospitalizations depend on the population’s geographic region. …”
  9. 169

    Data from: Colony losses of stingless bees increase in agricultural areas, but decrease in forested areas by Malena Sibaja Leyton (18400983)

    Published 2025
    “…</p><p><br></p><p dir="ltr">#METADATA</p><p dir="ltr">#'data.frame': 472 obs. of 28 variables:</p><p dir="ltr"> #$ ID: Factor variable; a unique identity for the response to the survey</p><p dir="ltr"> #$ Year: Factor variable; six factors available (2016, 2017, 2018, 2019, 2020, 2021) representing the year for the response to the survey</p><p dir="ltr"> #$ N_dead_annual: Numeric variable; representing the number of colonies annually lost</p><p dir="ltr">#$ N_alive_annual: Numeric variable; representing the number of colonies annually alive</p><p dir="ltr"> #$ N_dead_dry: Numeric variable; representing the number of colonies lost during the dry season</p><p dir="ltr">#$ N_alive_dry: Numeric variable; representing the number of colonies alive during the dry season</p><p dir="ltr"> #$ N_dead_rainy: Numeric variable; representing the number of colonies lost during the rainy season</p><p dir="ltr">#$ N_alive_rainy: Numeric variable; representing the number of colonies alive during the rainy season</p><p dir="ltr"> #$ Education: Factor variable; four factors are available ("Self-taught","Learned from another melip","Intro training","Formal tech training"), representing the training level in meliponiculture</p><p dir="ltr"> #$ Operation_Size: Numeric variable; representing the number of colonies managed by the participant (in n)</p><p dir="ltr"> #$ propAgri: Numeric variable; representing the percentage of agricultural area surrounding the meliponary (in %)</p><p dir="ltr"> #$ propForest: Numeric variable; representing the percentage of forested area surrounding the meliponary (in %)</p><p dir="ltr">#$ temp.avg_annual: Numeric variable; representing the average annual temperature (in ºC)</p><p dir="ltr">#$ precip_annual_sum: Numeric variable; representing the total accumulated precipitation (in mm)</p><p dir="ltr">#$ precip_Oct_March_sum: Numeric variable; representing the total accumulated precipitation between October to March (in mm)</p><p dir="ltr">#$ precip_Apri_Sept_sum: Numeric variable; representing the total accumulated precipitation between April to September (in mm)</p><p dir="ltr">#$ temp.avg_Oct_March: Numeric variable; representing the total accumulated precipitation between October to March (in ºC)</p><p dir="ltr">#$ temp.avg_Apri_Sept: Numeric variable; representing the total accumulated precipitation between April to September (in ºC)</p><p dir="ltr"> #$ Importance_dead: Factor variable; three factors are available Normal","High","Very high"), representing the perception of the significance of annual colony losses</p><p dir="ltr"> #$ Climatic_environmental: Binary variable; representing if the participant considered climatic and environmental problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Contamination: Binary variable; representing if the participant considered contamination problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Nutritional: Binary variable; representing if the participant considered nutritional problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Sanitary: Binary variable; representing if the participant considered sanitary problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Queen: Binary variable; representing if the participant considered queen problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Time: Binary variable; representing if the participant considered time problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Economic: Binary variable; representing if the participant considered economic problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Attacks: Binary variable; representing if the participant considered time attacks as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Swarming: Binary variable; representing if the participant considered swarming problems as a potential driver (1) or not (0) of their annual colony losses</p><p><br></p>…”
  10. 170
  11. 171
  12. 172
  13. 173
  14. 174
  15. 175
  16. 176

    Y-27632 collaborated with BA to attenuate the increase in the integrity and decrease in the permeability of epithelial barrier injury induced by LPS in Caco2 monolayers. by Luqiong Liu (11537092)

    Published 2024
    “…(<b>B)</b> Y-27632 collaborated with BA to attenuate the effect of LPS on TEER in Caco2 cells on day 22. (<b>C</b>) Y-27632 collaborated with BA to alleviate the decrease in FD-4 flux in LPS-induced Caco2 cells on day 22. …”
  17. 177
  18. 178
  19. 179
  20. 180