Showing 19,121 - 19,140 results of 21,342 for search '(( ((significant group) OR (significant degrees)) decrease ) OR ( significant decrease decrease ))', query time: 0.56s Refine Results
  1. 19121

    Data Sheet 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  2. 19122

    Table 1_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.csv by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”
  3. 19123

    Data Sheet 1_Mobility status, nutritional intervention and meal eaten are associated with discharge home: the nutritionDay study in China.docx by Bei Zhou (5219792)

    Published 2025
    “…The sample was divided into mobile and reduced mobility groups. Cox regression models were used to identify the potential effects of nutritional intervention, meal eaten, and mobility status on discharge home. …”
  4. 19124

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  5. 19125

    Table 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  6. 19126

    Table 1_Impact of dual residual risk of cholesterol and inflammation on adult male sex hormones: a cross-sectional study from NHANES.docx by Yang Zhou (65942)

    Published 2025
    “…In the presence of both risk factors (BR), TT decreased most significantly (β = -79.37, 95% CI [-112.74, -46.00], p < 0.0001), as did FT in the same subgroup (β = -1.00, 95% CI [-1.61, -0.40], p = 0.0012). …”
  7. 19127

    Data Sheet 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  8. 19128

    Image 1_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.tiff by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”
  9. 19129

    Table1_Sucrose synthase gene family in common bean during pod filling subjected to moisture restriction.docx by Norma Cecilia Morales-Elias (20446292)

    Published 2024
    “….), leaf photosynthesis is significantly reduced under drought conditions. Previous studies have shown that some drought-tolerant cultivars use the pod walls to compensate the decreased photosynthesis rate in leaves by acting as temporary reservoirs of carbohydrates to support seed filling. …”
  10. 19130

    Data Sheet 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  11. 19131

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  12. 19132

    Inflammatory markers correlate with lymphocytes infiltrating and predict immunotherapy prognosis for esophageal cancer by Bei Wang (116772)

    Published 2024
    “…</p> <p><b>Results:</b> Decreased inflammation was found to be associated with increased CD3<sup>+</sup> and CD8<sup>+</sup> T-cell infiltration and a better prognosis. …”
  13. 19133

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  14. 19134

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  15. 19135

    Table 5_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  16. 19136

    Table 3_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.csv by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”
  17. 19137

    Table 6_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  18. 19138

    Data Sheet 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  19. 19139

    Table 7_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Results<p>Polygonatum sibiricum polysaccharides significantly improved zebrafish swimming behavior, reduced blood glucose and fructosamine levels, and enhanced ATP production (p < 0.01). …”
  20. 19140

    Table 4_Tackling global inequalities in maternal hypertensive disorders: trends and the impact of public health emergencies, 1990–2021.xlsx by Siying Wei (5990276)

    Published 2025
    “…However, the pandemic significantly slowed the decline in low- and low-middle SDI regions.…”