Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
-
441
Trends of average and best race times for IRONMAN<sup>®</sup> age group triathletes.
Published 2024Subjects: -
442
-
443
Number of finishers by sex and men-to-women ratio over the years between 2002 and 2022.
Published 2024Subjects: -
444
Split and overall IRONMAN<sup>®</sup> race times histograms for women and men.
Published 2024Subjects: -
445
-
446
-
447
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
448
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
449
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
450
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
451
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
452
-
453
-
454
-
455
-
456
Charts revealing A) the significant decrease (<i>p</i> < 0.05) in the membrane integrity and B) the significant increase (<i>p</i> < 0.05) in the membrane permeability after treatment with harmalacidine hydrochloride in a representative <i>S. aureus</i> isolate (n = 3 as technical repeats of the same isolate).
Published 2025“…<p>Charts revealing A) the significant decrease (<i>p</i> < 0.05) in the membrane integrity and B) the significant increase (<i>p</i> < 0.05) in the membrane permeability after treatment with harmalacidine hydrochloride in a representative <i>S. aureus</i> isolate (n = 3 as technical repeats of the same isolate).…”
-
457
-
458
-
459
-
460