Showing 421 - 440 results of 173,014 for search '(( 0 0 decrease ) OR ( 50 ((((ns decrease) OR (mean decrease))) OR (we decrease)) ))', query time: 0.82s Refine Results
  1. 421
  2. 422
  3. 423
  4. 424
  5. 425
  6. 426
  7. 427
  8. 428

    Forests to Faucets 2.0 by U.S. Forest Service (17476914)

    Published 2024
    “…As developed in Forests to Faucets (USFS 2011), the Important Areas for Surface Drinking Water (IMP) model can be broken down into two parts: IMPn = (PRn) * (Qn)Calculated using R, Updated September 2023IMP_RIMP, Important Areas for Surface Drinking Water (0-100 Quantiles)Calculated using R, Updated September 2023NON_FORESTAcres of non-forestPADUS and NLCDPRIVATE_FORESTAcres of private forestPADUS and NLCDPROTECTED_FORESTAcres of protected forest (State, Local, NGO, Permanent Easement)PADUS, NCED, and NLCDNFS_FORESTAcres of National Forest System (NFS) forestPADUS and NLCDFEDERAL_FORESTAcres of Other Federal forest (Non-NFS Federal)PADUS and NLCDPER_FORPRIPercent Private ForestCalculated using ArcGISPER_FORNFSPercent NFS ForestCalculated using ArcGISPER_FORPROPercent Protected (Other State, Local, NGO, Permanent Easement, NFS, and Federal) ForestCalculated using ArcGISWFP_HI_ACAcres with High and Very High Wildfire Hazard Potential (WHP)Dillon, 2018PER_WFPPercent of HU 12 with High and Very High Wildfire Hazard Potential (WHP)Dillon, 2018PER_IDRISKPercent of HU 12 that is at risk for mortality - 25% of standing live basal area greater than one inch in diameter will die over a 15- year time frame (2013 to 2027) due to insects and diseases.Krist, et Al,. 2014PERDEV_1040_45% Landuse Change 2010-2040 (low)ICLUSPERDEV_1090_45% Landuse Change 2010-2090 (low)ICLUSPERDEV_1040_85% Landuse Change 2010-2040 (high)ICLUSPERDEV_1090_85% Landuse Change 2010-2090 (high)ICLUSPER_Q40_45% Water Yield Change 2010-2040 (low) WASSI , Updated September 2023PER_Q90_45% Water Yield Change 2010-2090 (low) WASSI , Updated September 2023PER_Q40_85% Water Yield Change 2010-2040 (high) WASSI , Updated September 2023PER_Q90_85% Water Yield Change 2010-2090 (high) WASSI , Updated September 2023WFP(APCW_R * IMP_R * PER_WFP )/ 10,000Wildfire Threat to Important Surface Drinking Water Watersheds Calculated using ArcGIS, Updated September 2023IDRISK(APCW_R * IMP_R * PER_IDRISK )/ 10,000Insect & Disease Threat to Important Surface Drinking Water Watersheds Calculated using ArcGIS, Updated September 2023DEV1040_45(APCW_R * IMP_R * PERDEV_1040_45)/ 10,000 Landuse Change in Important Surface Drinking Water Watersheds 2010-2040 (low emissions) Calculated using ArcGIS, Updated September 2023DEV1090_45(APCW_R * IMP_R * PERDEV_1090_45)/ 10,000 Landuse Change in Important Surface Drinking Water Watersheds 2010-2040 (high emissions) Calculated using ArcGIS, Updated September 2023DEV1040_85(APCW_R * IMP_R * PERDEV_1040_85)/ 10,000 Landuse Change in Important Surface Drinking Water Watersheds 2010-2090 (low emissions) Calculated using ArcGIS, Updated September 2023DEV1090_85(APCW_R * IMP_R * PERDEV_1090_85)/ 10,000 Landuse Change in Important Surface Drinking Water Watersheds 2010-2090 (high emissions) Calculated using ArcGIS, Updated September 2023Q1040_45-1 * (APCW_R * IMP_R * PER_Q40_45)/ 10,000 Water Yield Decrease in Important Surface Drinking Water Watersheds 2010-2040 (low emissions) Calculated using ArcGIS, Updated September 2023Q1090_45-1 * (APCW_R * IMP_R * PER_Q90_45)/ 10,000 Water Yield Decrease in Important Surface Drinking Water Watersheds 2010-2040 (high emissions) Calculated using ArcGIS, Updated September 2023Q1040_85-1 * (APCW_R * IMP_R * PER_Q40_85)/ 10,000 Water Yield Decrease in Important Surface Drinking Water Watersheds 2010-2090 (low emissions) Calculated using ArcGIS, Updated September 2023Q1090_85-1 * (APCW_R * IMP_R * PER_Q90_85)/ 10,000 Water Yield Decrease in Important Surface Drinking Water Watersheds 2010-2090 (high emissions) Calculated using ArcGIS, Updated September 2023WFP_IMP_RWildfire Threat to Important Surface Drinking Water Watersheds (0-100 Quantiles)Calculated using R, Updated September 2023IDRISK_RInsect & Disease Threat to Important Surface Drinking Water Watersheds (0-100 Quantiles)Calculated using R, Updated September 2023DEV40_45_RLanduse Change in Important Surface Drinking Water Watersheds 2010-2040 (low emissions) (0-100 Quantiles)Calculated using R, Updated September 2023DEV40_85_RLanduse Change in Important Surface Drinking Water Watersheds 2010-2040 (high emissions) (0-100 Quantiles)Calculated using R, Updated September 2023DEV90_45_RLanduse Change in Important Surface Drinking Water Watersheds 2010-2090 (low emissions) (0-100 Quantiles)Calculated using R, Updated September 2023DEV90_85_RLanduse Change in Important Surface Drinking Water Watersheds 2010-2090 (high emissions) (0-100 Quantiles)Calculated using R, Updated September 2023Q40_45_RWater Yield Decrease in Important Surface Drinking Water Watersheds 2010-2040 (low emissions) (0-100 Quantiles)Calculated using R, Updated September 2023Q40_85_RWater Yield Decrease in Important Surface Drinking Water Watersheds 2010-2040 (high emissions) (0-100 Quantiles)Calculated using R, Updated September 2023Q90_45_RWater Yield Decrease in Important Surface Drinking Water Watersheds 2010-2090 (low emissions) (0-100 Quantiles)Calculated using R, Updated September 2023Q90_85_RWater Yield Decrease in Important Surface Drinking Water Watersheds 2010-2090 (high emissions) (0-100 Quantiles)Calculated using R, Updated September 2023RegionUS Forest Service Region numberUSFSRegionnameUS Forest Service Region nameUSFSHUC_Num_DiffThis field compares the value in column HUC12(circa 2019 wbd) with the value in HUC_12 (circa 2009 wassi)-1 = No equivalent WASSI HUC. …”
  9. 429

    Summary of trend results based on Mann-Kendall test and Sen’s slope estimator for the 34 weather stations (arranged according to administrative division, in bold) for the wet season (May to October), (<i>p</i> < 0.10 = *, <i>p</i> < 0.05 = **, <i>p</i> < 0.01 = ***,—sign indicates decreasing trend). by Mohammed Mainuddin (8723352)

    Published 2022
    “…<p>Summary of trend results based on Mann-Kendall test and Sen’s slope estimator for the 34 weather stations (arranged according to administrative division, in bold) for the wet season (May to October), (<i>p</i> < 0.10 = *, <i>p</i> < 0.05 = **, <i>p</i> < 0.01 = ***,—sign indicates decreasing trend).…”
  10. 430
  11. 431
  12. 432
  13. 433
  14. 434

    Elemental distribution of FG0. by Qingwei Sun (11457516)

    Published 2023
    “…Furthermore, porosity and the average pore size decreased and the proportion of small holes in the pores gradually increased. …”
  15. 435

    ROB 2.0 for RCT. by Siyuan Chen (200219)

    Published 2025
    “…The Cochrane Risk of Bias tool 2.0 and the Risk of Bias In Non-randomized Studies of Interventions tool were used for the quality assessment. …”
  16. 436
  17. 437
  18. 438
  19. 439

    S1 Data - by Nicholas J. Ripley (14709756)

    Published 2023
    Subjects:
  20. 440