Search alternatives:
nn decrease » mean decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search)
c decrease » c decreased (Expand Search), rc decreased (Expand Search), _ decreased (Expand Search)
100 c » 100 μ (Expand Search), 100 _ (Expand Search), 100 g (Expand Search)
nn decrease » mean decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search)
c decrease » c decreased (Expand Search), rc decreased (Expand Search), _ decreased (Expand Search)
100 c » 100 μ (Expand Search), 100 _ (Expand Search), 100 g (Expand Search)
-
1
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
2
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
3
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
4
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
5
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
6
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
7
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
8
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
9
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
10
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
11
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
12
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
13
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
14
Chloro Half-Sandwich Osmium(II) Complexes: Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity
Published 2007“…The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
-
15
-
16
-
17
-
18
-
19
Performance of decoding-based estimators depends on the dimensionality of the response trajectories and on the number of response trajectory samples.
Published 2019“…<p>Performance of various model-free decoding estimators (colored lines) for Examples 1 <b>(A, D)</b>, 2 <b>(B, E)</b>, 3 <b>(C, F)</b>, respectively, compared to the MAP bound, <i>I</i><sub>MAP</sub> (black line), as a function of input trajectory dimension, <i>d</i> (at fixed <i>N</i> = 1000) in A, B, C; or as a function of the number of samples, <i>N</i>, per input condition (at fixed <i>d</i> = 100) in D, E, F. …”
-
20