Showing 941 - 960 results of 226,081 for search '(( 10 ((ng decrease) OR (a decrease)) ) OR ( 5 ((we decrease) OR (nn decrease)) ))', query time: 1.63s Refine Results
  1. 941
  2. 942
  3. 943
  4. 944
  5. 945

    Image 2_Probiotic Limosilactobacillus reuteri KUB-AC5 decreases urothelial cell invasion and enhances macrophage killing of uropathogenic Escherichia coli in vitro study.tiff by Arishabhas Tantibhadrasapa (13929639)

    Published 2024
    “…The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC.</p>Results and discussion<p>Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. …”
  6. 946

    Table 1_Probiotic Limosilactobacillus reuteri KUB-AC5 decreases urothelial cell invasion and enhances macrophage killing of uropathogenic Escherichia coli in vitro study.xlsx by Arishabhas Tantibhadrasapa (13929639)

    Published 2024
    “…The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC.</p>Results and discussion<p>Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. …”
  7. 947

    Image 1_Probiotic Limosilactobacillus reuteri KUB-AC5 decreases urothelial cell invasion and enhances macrophage killing of uropathogenic Escherichia coli in vitro study.tiff by Arishabhas Tantibhadrasapa (13929639)

    Published 2024
    “…The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC.</p>Results and discussion<p>Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. …”
  8. 948
  9. 949
  10. 950
  11. 951
  12. 952

    A PPARα Promoter Variant Impairs ERR-Dependent Transactivation and Decreases Mortality after Acute Coronary Ischemia in Patients with Diabetes by Sharon Cresci (53599)

    Published 2010
    “…Consistent with previous descriptions of PPARα in experimental models and human disease, we describe a novel <em>PPARA</em> promoter SNP that decreases transcriptional activation of <em>PPARA</em> and protects against mortality in diabetic patients after ACS.…”
  13. 953
  14. 954
  15. 955
  16. 956
  17. 957
  18. 958
  19. 959
  20. 960