Search alternatives:
web decrease » we decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nm decrease » nn decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search)
web decrease » we decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nm decrease » nn decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search)
-
1
-
2
-
3
-
4
Knockdown of FZD10 results in a decrease in cell proliferation in the neural tube.
Published 2020“…(F) Quantification of the number of pH3 positive cells per section in the neural tube electroporated with FZD10 shRNA vector compared to the non-electroporated side showed that there was a statistically significant decrease in the number of pH3 positive cells (students t-test (paired)).…”
-
5
-
6
-
7
The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.
Published 2025“…<p>The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
-
8
The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.
Published 2025“…<p>The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
-
9
-
10
-
11
-
12
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
13
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
14
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
15
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
16
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
17
Glycogen phosphorylase knockdown decreases doubling time of MCF-7 and MCF-10A cells.
Published 2019“…<p>Glycogen phosphorylase knockdown decreases doubling time of MCF-7 and MCF-10A cells.…”
-
18
-
19
-
20