Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
men decrease » mean decrease (Expand Search), nn decrease (Expand Search), meja decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
10 men » 10 min (Expand Search), 10 women (Expand Search)
a step » _ step (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
men decrease » mean decrease (Expand Search), nn decrease (Expand Search), meja decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
10 men » 10 min (Expand Search), 10 women (Expand Search)
a step » _ step (Expand Search)
-
21781
-
21782
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
-
21783
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
-
21784
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
-
21785
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
-
21786
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
-
21787
Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate
Published 2020“…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”