Search alternatives:
nm decrease » nn decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search)
_ decrease » _ decreased (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
nm decrease » nn decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decreased (Expand Search), _ decreases (Expand Search)
_ decrease » _ decreased (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
10
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
11
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
12
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
13
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
14
-
15
-
16
-
17
-
18
The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.
Published 2025“…<p>The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
-
19
The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.
Published 2025“…<p>The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
-
20