Showing 11,901 - 11,920 results of 100,562 for search '(( 100 ng decrease ) OR ( 5 ((((nn decrease) OR (a decrease))) OR (mean decrease)) ))', query time: 1.49s Refine Results
  1. 11901

    Integrin β4, αV, α5 and β3, were differentially regulated among the three cell lines in response to glucose. by Sirin A. I. Adham (662525)

    Published 2014
    “…Integrin α-V was significantly decreased under hypoglycemia only in MDA-MB-231P cells p = 0.001. …”
  2. 11902
  3. 11903
  4. 11904
  5. 11905
  6. 11906

    Relative mean outbreak size reduction 1 − 〈Ω(<i>a</i> = 30%)〉/〈Ω(<i>a</i> = 0)〉 caused by DCT in different network topologies. by Angelique Burdinski (14227341)

    Published 2022
    “…<p>App participation was fixed at <i>a</i> = 30%, and symptom-based testing was assumed to lead to initial under-ascertainment factors of <i>UA</i><sub>0</sub> ∈ {12, 4, 2.4} (<i>q</i> = 0.1, 0.3 and 0.5, respectively). …”
  7. 11907
  8. 11908
  9. 11909

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  10. 11910

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  11. 11911

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  12. 11912

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  13. 11913

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  14. 11914

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  15. 11915

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  16. 11916

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  17. 11917
  18. 11918
  19. 11919
  20. 11920

    Image5_A distinct immune landscape in anti-synthetase syndrome profiled by a single-cell genomic study.jpeg by Jiayu Ding (12005975)

    Published 2024
    “…As ASS and MDA5<sup>+</sup> DM have similar organ involvements, MDA5<sup>+</sup> DM was used as a disease control. …”