Search alternatives:
we decrease » _ decrease (Expand Search), teer decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
100 we » 100 de (Expand Search)
we decrease » _ decrease (Expand Search), teer decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
100 we » 100 de (Expand Search)
-
441
-
442
-
443
-
444
Galiellalactone decreases the proportion of ALDH+ prostate cancer cells in vitro and the ALDH1A1 expression in vivo.
Published 2013“…<p>A. DU145 and LNCaP-IL6 cells were treated with galiellalactone (5–50 µM) for 24 h and subjected to ALDEFLUOR® assay. …”
-
445
-
446
-
447
-
448
-
449
-
450
-
451
-
452
-
453
-
454
-
455
Tunicamycin produces a concentration- and time-dependent decrease in cell viability in SH-SY5Y cells concomitant with caspase-3 activation.
Published 2013“…<p>(A) Treatment of SH-SY5Y cells with tunicamycin (0.1–5µM) for 24 h caused a progressive decrease in cell viability as measured by Calcein AM cleavage assay. …”
-
456
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
457
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
458
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
459
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
460