Showing 100,281 - 100,300 results of 105,161 for search '(( 12 mean decrease ) OR ( 5 ((((wt decrease) OR (nn decrease))) OR (a decrease)) ))', query time: 1.75s Refine Results
  1. 100281
  2. 100282

    DataSheet1_Repeating Earthquakes During Multiple Phases of Unrest and Eruption at Mount Agung, Bali, Indonesia, 2017.pdf by John J. Wellik (10808856)

    Published 2021
    “…We interpret the transitions in seismicity as the manifestation of a three-phase physical model including an Intrusion Phase, a Transition Phase, and a Eruptive Phase. …”
  3. 100283

    Image1_Repeating Earthquakes During Multiple Phases of Unrest and Eruption at Mount Agung, Bali, Indonesia, 2017.TIF by John J. Wellik (10808856)

    Published 2021
    “…We interpret the transitions in seismicity as the manifestation of a three-phase physical model including an Intrusion Phase, a Transition Phase, and a Eruptive Phase. …”
  4. 100284
  5. 100285
  6. 100286

    Effects of mesenchymal stem cells (MSCs) on the inflammation and fibrosis of acute peritoneal adhesions. by Nan Wang (21935)

    Published 2012
    “…Sections were evaluated from five randomly selected fields under a magnification of ×100 by an independent pathologist. …”
  7. 100287
  8. 100288

    DataSheet1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.docx by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  9. 100289

    Presentation2_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  10. 100290

    Presentation1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  11. 100291

    DataSheet1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.docx by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  12. 100292

    DataSheet1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.docx by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  13. 100293

    Presentation2_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  14. 100294

    Presentation3_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  15. 100295

    Presentation1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  16. 100296

    Presentation1_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  17. 100297

    Presentation2_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  18. 100298

    Presentation3_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  19. 100299

    Presentation3_Bridging Size and Charge Effects of Mesoporous Silica Nanoparticles for Crossing the Blood–Brain Barrier.PPTX by Yi-Ping Chen (530619)

    Published 2022
    “…A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to −51.6 mV. …”
  20. 100300

    Tuning UV Absorption in Imine-Linked Covalent Organic Frameworks via Methylation by Ellen Dautzenberg (14169199)

    Published 2022
    “…By comparing the properties of all COFs, the following trends were found: (1) upon methylation of the aldehyde nodes, COFs show increased Brunauer–Emmett–Teller surface areas, reduced pore collapse, blue-shifted absorbance spectra, and ∼0.2 eV increases in their optical band gaps. (2) COFs with dimethylated amine linkers show a lower porosity. (3) In tetramethylated amine linkers, the COF porosity even further decreases, the absorbance spectra are clearly red-shifted, and smaller optical band gaps are obtained. …”