Showing 101,941 - 101,960 results of 102,683 for search '(( 12 men decrease ) OR ( 5 ((((we decrease) OR (mean decrease))) OR (a decrease)) ))', query time: 1.83s Refine Results
  1. 101941

    Effect of Oxidation and Protonation States on [2Fe–2S] Cluster Nitrosylation Giving {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complexes (DNICs) by Christine E. Schiewer (6112373)

    Published 2018
    “…Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm<sup>–1</sup> and a significant shift of the reduction potential to less negative values (Δ<i>E</i><sub>1/2</sub> = 0.26 V), but no effect on <sup>57</sup>Fe Mössbauer parameters is observed. …”
  2. 101942

    Effect of Oxidation and Protonation States on [2Fe–2S] Cluster Nitrosylation Giving {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complexes (DNICs) by Christine E. Schiewer (6112373)

    Published 2018
    “…Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm<sup>–1</sup> and a significant shift of the reduction potential to less negative values (Δ<i>E</i><sub>1/2</sub> = 0.26 V), but no effect on <sup>57</sup>Fe Mössbauer parameters is observed. …”
  3. 101943

    Effect of Oxidation and Protonation States on [2Fe–2S] Cluster Nitrosylation Giving {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complexes (DNICs) by Christine E. Schiewer (6112373)

    Published 2018
    “…Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm<sup>–1</sup> and a significant shift of the reduction potential to less negative values (Δ<i>E</i><sub>1/2</sub> = 0.26 V), but no effect on <sup>57</sup>Fe Mössbauer parameters is observed. …”
  4. 101944

    Effect of Oxidation and Protonation States on [2Fe–2S] Cluster Nitrosylation Giving {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complexes (DNICs) by Christine E. Schiewer (6112373)

    Published 2018
    “…Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm<sup>–1</sup> and a significant shift of the reduction potential to less negative values (Δ<i>E</i><sub>1/2</sub> = 0.26 V), but no effect on <sup>57</sup>Fe Mössbauer parameters is observed. …”
  5. 101945

    Effect of Oxidation and Protonation States on [2Fe–2S] Cluster Nitrosylation Giving {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complexes (DNICs) by Christine E. Schiewer (6112373)

    Published 2018
    “…Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm<sup>–1</sup> and a significant shift of the reduction potential to less negative values (Δ<i>E</i><sub>1/2</sub> = 0.26 V), but no effect on <sup>57</sup>Fe Mössbauer parameters is observed. …”
  6. 101946

    Effect of Oxidation and Protonation States on [2Fe–2S] Cluster Nitrosylation Giving {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complexes (DNICs) by Christine E. Schiewer (6112373)

    Published 2018
    “…Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm<sup>–1</sup> and a significant shift of the reduction potential to less negative values (Δ<i>E</i><sub>1/2</sub> = 0.26 V), but no effect on <sup>57</sup>Fe Mössbauer parameters is observed. …”
  7. 101947

    Effect of Oxidation and Protonation States on [2Fe–2S] Cluster Nitrosylation Giving {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complexes (DNICs) by Christine E. Schiewer (6112373)

    Published 2018
    “…Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm<sup>–1</sup> and a significant shift of the reduction potential to less negative values (Δ<i>E</i><sub>1/2</sub> = 0.26 V), but no effect on <sup>57</sup>Fe Mössbauer parameters is observed. …”
  8. 101948

    Effect of Oxidation and Protonation States on [2Fe–2S] Cluster Nitrosylation Giving {Fe(NO)<sub>2</sub>}<sup>9</sup> Dinitrosyl Iron Complexes (DNICs) by Christine E. Schiewer (6112373)

    Published 2018
    “…Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm<sup>–1</sup> and a significant shift of the reduction potential to less negative values (Δ<i>E</i><sub>1/2</sub> = 0.26 V), but no effect on <sup>57</sup>Fe Mössbauer parameters is observed. …”
  9. 101949

    Image_2_Exosomes Derived From Mesenchymal Stem Cells Ameliorate Renal Ischemic-Reperfusion Injury Through Inhibiting Inflammation and Cell Apoptosis.PNG by Long Li (6555)

    Published 2019
    “…Rats were divided into five groups: sham-operated, IRI, MSC, MSC-ex, and MSC-ex + RNAase group. …”
  10. 101950

    Image_2_Exosomes Derived From Mesenchymal Stem Cells Ameliorate Renal Ischemic-Reperfusion Injury Through Inhibiting Inflammation and Cell Apoptosis.PNG by Long Li (6555)

    Published 2019
    “…Rats were divided into five groups: sham-operated, IRI, MSC, MSC-ex, and MSC-ex + RNAase group. …”
  11. 101951

    Image_1_Exosomes Derived From Mesenchymal Stem Cells Ameliorate Renal Ischemic-Reperfusion Injury Through Inhibiting Inflammation and Cell Apoptosis.TIF by Long Li (6555)

    Published 2019
    “…Rats were divided into five groups: sham-operated, IRI, MSC, MSC-ex, and MSC-ex + RNAase group. …”
  12. 101952

    Image_1_Exosomes Derived From Mesenchymal Stem Cells Ameliorate Renal Ischemic-Reperfusion Injury Through Inhibiting Inflammation and Cell Apoptosis.TIF by Long Li (6555)

    Published 2019
    “…Rats were divided into five groups: sham-operated, IRI, MSC, MSC-ex, and MSC-ex + RNAase group. …”
  13. 101953

    High-dose NaF induced the occurrence of apoptosis in H9 hESCs. by Xin Fu (448766)

    Published 2016
    “…<p>(A) The percentage of early apoptotic cells (G3) and late apoptotic cells (G4) was significantly increased after exposure to 2 mM and 4 mM NaF, as demonstrated by the Annexin V/ Propidium Iodide staining assay. …”
  14. 101954
  15. 101955
  16. 101956
  17. 101957
  18. 101958
  19. 101959
  20. 101960